Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Trauma registers show that hypothermia (HT) is an independent risk factor for death during hemorrhagic shock, although experimental animal studies indicate that HT may be beneficial during these conditions. However, the animal models were not designed to detect the expected increase in bleeding caused by HT. In a new model for uncontrolled bleeding, 40 Sprague-Dawley rats were exposed to a standardized femoral artery injury and randomized to either normothermia or HT. ⋯ Total rebleeding volume was significantly larger in the hypothermic group, even at body temperatures greater than 35°C. We conclude that the risk of rebleeding from a femoral injury is greater in the presence of cooling and HT. The larger rebleeding volumes seen even at body temperatures greater than 35°C indicate that factors other than temperature-induced coagulopathy also contributed to the increased hemorrhage.
-
Hyporeactivity to vasoconstrictors is one of the clinical manifestations of sepsis in man and experimental animals. The objective of the investigation was to examine whether atorvastatin can prevent hyporeactivity to norepinephrine (NE) in mouse aorta in sepsis, and if so, what are the mechanisms involved. Sepsis in mice was induced by cecal ligation and puncture. ⋯ Atorvastatin pretreatment, however, prevented the decrease in α(1D)-adrenoceptor mRNA expression in septic animals. In conclusion, atorvastatin seems to prevent hyporeactivity to vasoconstrictor NE in the aorta from septic mice through attenuation of overproduction of NO as well as improved α(1D)-adrenoceptor mRNA expression. The findings of the present study may explain the beneficial effects of atorvastatin on improved hemodynamic functions in sepsis.
-
Different isoforms of nitric oxide (NO) synthase are critically involved in the development of pulmonary failure secondary to acute lung injury. Here we tested the hypothesis that simultaneous blockade of inducible and neuronal NO synthase effectively prevents the pulmonary lesions in an ovine model of acute respiratory distress syndrome induced by combined burn and smoke inhalation injury. Chronically instrumented sheep were allocated to a sham-injured group (n = 6), an injured and untreated group (n = 6), or an injured group treated with simultaneous infusion of selective inducible and neuronal NO synthase inhibitors (n = 5). ⋯ The treatment fully prevented the elevations in lymph and plasma nitrate/nitrite levels, pulmonary shunting, ventilatory pressures, lung lymph flow, and wet/dry weight ratio and significantly attenuated the decline in PaO2/FiO2 ratio. In conclusion, simultaneous blockade of inducible and neuronal NO synthase exerts beneficial pulmonary effects in an ovine model of acute respiratory distress syndrome secondary to combined burn and smoke inhalation injury. This novel treatment strategy may represent a useful therapeutic adjunct for patients with these injuries.
-
Blunt chest trauma impairs the outcome of multiply-injured patients. Lung contusion induces inflammatory alterations and Fas-dependent apoptosis of alveolar type 2 epithelial (AT2) cells has been described. The Fas/Fas ligand (FasL) system seems to exhibit a proinflammatory potential. ⋯ The proinflammatory response of AMΦs is enhanced by FasL stimulation. Both AMΦs and AT2 cells seem to contribute to the mediator release after lung contusion. These results confirm the importance of the Fas/FasL system in the inflammatory response after chest trauma.
-
Neutrophil infiltration is an insidious feature in septic lung injury, although the specific adhesive mechanisms regulating pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. The aim of this present study was to define the role of CD44 in sepsis-induced neutrophil infiltration and lung damage. Mice were treated with a monoclonal antibody against CD44 before cecal ligation and puncture (CLP) induction. ⋯ Moreover, administration of hyaluronidase had no effect on CLP-induced neutrophil recruitment and tissue damage in the lung. Our data demonstrate that CD44 contributes to pulmonary infiltration of neutrophils and lung damage associated with abdominal sepsis. Thus, these novel findings suggest that CD44 may serve as a target to protect against lung injury in polymicrobial sepsis.