Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Heatstroke, a severe inflammatory response disease, is a medical emergency characterized by high body temperature. The protein C anticoagulant system inhibits inflammation resulting from various causes. Thrombomodulin (TM), a widely expressed glycoprotein originally identified in vascular endothelium, is an important cofactor in the protein C anticoagulant system. ⋯ Inhibition of NO overproduction by recombinant TM was observed during heat stress-induced inflammation. Because of the decline in inflammatory marker levels, TM ameliorated injury to various organs in the rat model of heat stress-induced acute inflammation. As TM exhibited a strong anti-inflammatory effect in a rat model of acute inflammation induced by heat stress, TM represents a potential therapeutic for heatstroke prevention or management in patients.
-
NO has been implicated in the pathogenesis of septic shock. However, the role of NO synthase 3 (NOS3) during sepsis remains incompletely understood. Here, we examined the impact of NOS3 deficiency on systemic inflammation and myocardial dysfunction during peritonitis-induced polymicrobial sepsis. ⋯ The impaired Ca handling of cardiomyocytes isolated from NOS3KO mice subjected to CASP was associated with depressed mitochondrial ATP production, a determinant of the Ca cycling capacity of sarcoplasmic reticulum Ca-ATPase. The NOS3 deficiency-induced impairment of the ability of mitochondria to produce ATP after CASP was at least in part attributable to reduction in mitochondrial respiratory chain complex I activity. These observations suggest that NOS3 protects against systemic inflammation and myocardial dysfunction after peritonitis-induced polymicrobial sepsis in mice.
-
Sepsis is the systemic inflammatory response syndrome secondary to a local infection, and severe sepsis and septic shock are the more devastating scenarios of this disease. In the last decade, considerable achievements were obtained in sepsis knowledge, and an international campaign was developed to improve the treatment of this condition. However, sepsis is still one of the most important causes of death in intensive care units. ⋯ This dysfunction, which may occur in patients presenting normal vital signs, can be accompanied by a significant increase in both morbidity and mortality. The early identification of high-risk sepsis patients through tissue perfusion markers such as lactate and venous oxygen saturation is crucial for prompt initiation of therapeutic support, which includes early goal-directed therapy as necessary. The purpose of this article was to review the most commonly used hemodynamic and perfusion parameters for hemodynamic optimization in sepsis, emphasizing the physiological background for their use and the studies that demonstrated their effectiveness as goals of volemic resuscitation.
-
Comparative Study
Effects of a selective iNOS inhibitor versus norepinephrine in the treatment of septic shock.
Inhibition of NOS is not beneficial in septic shock; selective inhibition of the inducible form (iNOS) may represent a better option. We compared the effects of the selective iNOS inhibitor BYK191023 with those of norepinephrine (NE) in a sheep model of septic shock. Twenty-four anesthetized, mechanically ventilated ewes received 1.5 g/kg body weight of feces into the abdominal cavity to induce sepsis. ⋯ Survival times were similar in the three groups. In this model of peritonitis, selective iNOS inhibition had more beneficial effects than NE on pulmonary artery pressures, gas exchange, mesenteric blood flow, microcirculation, and lactate concentration. Combination of this selective iNOS inhibitor with NE allowed a higher arterial pressure and renal blood flow to be maintained.
-
Hemodynamic instability plays a major role in the pathogenesis of systemic inflammation, tissue hypoxia, and multiple organ dysfunction in sepsis. Aggressive fluid replacement is one of the key interventions for the hemodynamic support in severe sepsis. In this scenario, the ability to restore the imbalance between tissue oxygen demand and supply, the heterogeneity in microcirculation, and endothelial dysfunction in the early stages of sepsis are associated with reduced mortality. ⋯ However, external validation of this trial remains to be carried out. To date, there is no unequivocal evidence that such strategy is both universally feasible and effective. In the present article, we review the current evidence and comment on the future perspectives on early fluid resuscitation in severe sepsis.