Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background: Sepsis-associated acute lung injury (SA-ALI) is a serious threat to human health. A growing body of evidence suggested that circular RNAs may be involved in ALI progression. The aim of this study was to investigate the effect and mechanism of circ_0001226 on lipopolysaccharide (LPS)-induced BEAS-2B cells. ⋯ Besides that, circ_0001226 interference contributed to cell proliferation and restrained apoptosis and inflammation in LPS-induced BEAS-2B cells. Mechanically, circ_0001226 worked as a molecular sponge of miR-940 to regulate TGFBR2 expression. Conclusion: Circ_0001226 deficiency weakened LPS-mediated proliferation inhibition and inflammatory processes in BEAS-2B cells by binding miR-940 and regulating TGFBR2.
-
Gut barrier dysfunction caused by intestinal ischemia/reperfusion (I/R) injury is associated with substantial death and morbidity. In this research, the role of microRNAs (miRNAs) in regulating intestinal I/R injury was investigated. We used miRNA sequencing to analyze clinical ischemic and normal intestinal samples. ⋯ We also identified eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) as a downstream target gene of miR-379-5p through bioinformatics prediction and experimental verification. The findings suggest that inhibiting miR-379-5p could improve intestinal epithelial cell proliferation and barrier function by targeting EIF4G2. The goal of this study was to find a potential target for treating I/R injury in the intestine, as well as to prevent and mitigate the damage caused.
-
Background: Circular RNAs are implicated in the progression of sepsis-associated acute kidney injury (AKI). Circ_0002131 was shown to aggravate cell inflammation and oxidative stress in sepsis-induced AKI. The aim of this study was to investigate the role and underlying mechanism of circ_0002131 in sepsis-induced AKI. ⋯ In addition, circ_0002131 targeted miR-942-5p to elevate OXSR1 expression. MiR-942-5p prevented LPS-evoked HK-2 cell injury via targeting OXSR1. Conclusion : All results demonstrated that circ_0002131 promoted LPS-mediated HK-2 cell injury via miR-942-5p-mediated upregulation of OXSR1, suggesting that the circ_0002131/miR-942-5p/OXSR1 axis was related to sepsis-induced AKI progression.
-
Normal shear stress is essential for the normal structure and functions of the microcirculation. Hemorrhagic shock leads to reduced shear stress due to reduced tissue perfusion. ⋯ We consider how this reduced shear stress causes (1) a failure to restore normal vasomotor function and normal tissue perfusion thus leading to persistent tissue hypoxia and (2) increased microvascular endothelial permeability resulting in edema formation and impaired organ function. We discuss the need for clinical research into resuscitation strategies and solutions that aim to quickly restore endothelial shear stress in the microcirculation to normal.
-
Observational Study
The Compensatory Reserve Index for Predicting Hemorrhagic Shock in Prehospital Trauma.
Background: The compensatory reserve index (CRI) is a noninvasive, continuous measure designed to detect intravascular volume loss. CRI is derived from the pulse oximetry waveform and reflects the proportion of physiologic reserve remaining before clinical hemodynamic decompensation. Methods: In this prospective, observational, prehospital cohort study, we measured CRI in injured patients transported by emergency medical services (EMS) to a single Level I trauma center. ⋯ Conclusions: Low prehospital CRI-T predicts blood product transfusion by EMS or within 4 hours of hospital arrival but is less prognostic than EMS blood pressure or shock index. The evaluated version of CRI may be useful in an austere setting at identifying injured patients that require the most significant medical resources. CRI may be improved with noise filtering to attenuate the effects of vibration and patient movement.