Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The incidence of nosocomial pneumonia (NP) among injured patients is substantial. We hypothesize that traumatic injury induces alterations in local organ effector cell function that may predispose the lungs of injured patients to infection. It is the objective of this study to compare the systemic and alveolar effector cell response to injury and assess the relationship these have to the development of NP. ⋯ These findings identify distinct trends in local organ cytokine production and alterations in effector cell phenotype that precede NP. The persistence of reduced HLA-DR expression amidst increasing levels of IL-10 in NP+ patients suggest that cell-mediated immune function is being suppressed. As such, local organ immunosuppression may be responsible for the development of nosocomial pneumonia in injured patients.
-
Trauma/hemorrhagic shock (T/HS) is associated with significant lung injury, which is mainly due to an inflammatory process, resulting from the local activation and subsequent interaction of endothelial cells and leukocytes. Adhesion molecules expressed by both cell types play a crucial role in the process of neutrophil-mediated endothelial cell injury. We have previously shown that mesenteric lymph duct ligation prevents T/HS-induced lung leukocyte infiltration and endothelial injury, suggesting that inflammatory factors originating from the gut and carried in the lymph are responsible for the lung injury observed following T/HS. ⋯ However, T/HS lymph failed to induce the shedding of E-selectin. In HUVECs treated with T/HS lymph, IL-6 concentrations were higher than HUVECs treated with T/SS lymph. These findings suggest that mesenteric lymph produced after hemorrhagic shock potentiates lung injury by the upregulation of endothelial cell adhesion molecule expression and IL-6 production.
-
The purpose of the study was to investigate the course of the zymosan-induced multiple organ dysfunction syndrome (MODS) in the absence of tumor necrosis factor (TNF) in a murine model. Tumor Necrosis Factor-alpha-lymphotoxin-a knockout (TNF/LT-/-) mice (n = 36) and wild-type (TNF/LT+/+) mice (n = 36) received 40 microg of lipopolysaccharide (LPS) intraperitoneally followed by zymosan at a dose of 1 mg/g body weight 6 days later (day 0). Animals were monitored daily for body weight and temperature and clinical symptoms. ⋯ Interestingly, besides mononuclear cells, inflammatory infiltrates in lungs and livers of TNF/LT+/+ but not of TNF-/- mice contained neutrophils. In conclusion, TNF-deficient mice exhibit significantly improved morbidity and mortality during zymosan-induced MODS. However, the absence of TNF does not completely protect against MODS in this murine model.
-
Previous studies have suggested benefit of mild hypothermia during hemorrhagic shock (HS). This finding needs additional confirmation and investigation into possible mechanisms. Proinflammatory cytokines are mediators of multiple organ failure following traumatic hemorrhagic shock and resuscitation. ⋯ We conclude that mild hypothermia improves survival time after uncontrolled HS. Uncontrolled HS induces a robust proinflammatory cytokine response. The unexpected increase in TNF-alpha with hypothermia deserves further investigation.
-
Comparative Study
Hypertonic saline improves intestinal mucosa barrier function and lung injury after trauma-hemorrhagic shock.
Our objective was to test the hypotheses that small volume hypertonic saline (HTS) resuscitation protects against trauma-hemorrhagic shock (T/HS)-induced intestinal and lung injury better than standard volume resuscitation with Ringer's lactate (RL), and that the degree of lung injury correlates with the degree of gut injury after therapy. Male Sprague-Dawley rats were subjected to laparotomy (trauma) and 90 min of T/HS or sham shock (T/SS), and were then resuscitated with RL or 7.5% NaCl solution at an equivalent sodium load. Intestinal and lung injury was assessed at 3 and 24 h after resuscitation. ⋯ Linear regression analysis revealed direct correlations between the percent of injured villi, increased lung permeability, and pulmonary neutrophil sequestration. Resuscitation with HTS ameliorated T/HS-induced gut and lung injury seen with RL resuscitation. These results, together with the direct correlation found between gut and lung injury, suggest that lung injury after T/HS may be mediated by gut injury.