Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Mitochondrial damage is an important cause of heart dysfunction after severe burn injury. However, the pathophysiological process remains unclear. This study aims to examine the mitochondrial dynamics in the heart and the role of μ-calpain, a cysteine protease, in this scenario. ⋯ Of note, inhibition of calpain yielded the emergence of more elongated mitochondria along with membrane invagination in the middle of the longitude, which is an indicator of the fission process. Finally, MDL28170, administered 1 h after burn injury, preserved mitochondrial function and heart performance, and increased the survival rate. Overall, these results provided the first evidence that mitochondrial recruitment of calpain confers heart dysfunction after severe burn injury, which involves aberrant mitochondrial dynamics.
-
T cell exhaustion is the main cause of sepsis-induced immunosuppression and is associated with the poor prognosis. Nicotinamide adenine dinucleotide (NAD + ) is well known for its anti-aging effect, but its role in sepsis-induced T cell exhaustion remains to be elucidated. In the present study, using a classic septic animal model, we found that the levels of NAD + and its downstream molecule, which is sirtuins 1 (SIRT1), in T cells in sepsis were decreased. ⋯ Nicotinamide ribose also inhibited the regulatory T cells expansion and programmed cell death 1 expression in CD4 + T cells in sepsis. In addition, the bacteria load, organ damage (lung, heart, liver, and kidney), and the mortality of septic mice were reduced after NR supplementation. In summary, these results demonstrate the beneficial effect of NR on sepsis and T cell exhaustion, which is associated with NAD + /SIRT1 pathway.
-
Objective: The aim of this study was to evaluate the reliability and feasibility of pulse Doppler measurements of peak velocity respiratory variability of mitral and tricuspid valve rings during systole as new dynamic indicators of fluid responsiveness in patients with septic shock. Methods: Transthoracic echocardiography (TTE) was performed to measure the respiratory variability of aortic velocity-time integral (∆VTI), respiratory variability of tricuspid annulus systolic peak velocity (∆RVS), respiratory variability of mitral annulus systolic peak velocity (∆LVS), and other related indicators. Fluid responsiveness was defined as a 10% increase in cardiac output after fluid expansion, assessed by TTE. ⋯ The sensitivity (Se) values were 1.00, 0.73, 0.81, and 0.83, whereas the specificity (Sp) values were 0.84, 0.91, 0.76, and 0.67, respectively. The optimal thresholds were 0.128, 0.129, 0.130, and 13.9 mm, respectively. Conclusion: Tissue Doppler ultrasound evaluation of respiratory variability of mitral and tricuspid annular peak systolic velocity could be a feasible and reliable method for the simple assessment of fluid responsiveness in patients with septic shock.
-
Background: Considerable data have shown that circular RNAs (circRNAs) mediate the pathogenesis of chronic obstructive pulmonary disease (COPD). The study aims to analyze the function and mechanism of circ_0026466 in COPD. Methods: Human bronchial epithelial cells (16HBE) were treated with cigarette smoke extract (CSE) to establish a COPD cell model. ⋯ Additionally, TRAF6, a target gene of miR-153-3p, regulated CSE-induced 16HBE cell injury by combining with miR-153-3p. Importantly, circ_0026466 activated NF-κB pathway by targeting the miR-153-3p/TRAF6 axis. Conclusion: Circ_0026466 absence protected against CSE-triggered 16HBE cell injury by activating the miR-153-3p/TRAF6/NF-κB pathway, providing a potential therapeutic target for COPD.
-
During and immediately after cardiac arrest, cerebral oxygen delivery is impaired mainly by microthrombi and cerebral vasoconstriction. This may narrow capillaries so much that it might impede the flow of red blood cells and thus oxygen transport. The aim of this proof-of-concept study was to evaluate the effect of M101, an extracellular hemoglobin-based oxygen carrier (Hemarina SA, Morlaix, France) derived from Arenicola marina , applied during cardiac arrest in a rodent model, on markers of brain inflammation, brain damage, and regional cerebral oxygen saturation. ⋯ While M101 applied during cardiac arrest did not significantly change inflammation or brain oxygenation, the data suggest cerebral damage reduction due to hypoxic brain injury, measured by phospho-tau. Global burden of ischemia appeared reduced because acidosis was less severe. Whether postcardiac arrest infusion of M101 improves brain oxygenation is unknown and needs to be investigated.