Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Sepsis is a multisystem disease process, which constitutes a significant public health challenge and is associated with high morbidity and mortality. Among other systems, sepsis is known to affect the cardiovascular system, which may manifest as myocardial injury, arrhythmias, refractory shock, and/or septic cardiomyopathy. Septic cardiomyopathy is defined as the reversible systolic and/or diastolic dysfunction of one or both ventricles. ⋯ Given the importance of timely detection of septic cardiomyopathy and its bearing on prognosis of patients, the role of RV dysfunction has come into renewed focus. Hence, through this review, we sought to describe the pathophysiology of RV dysfunction in sepsis and what have we learnt so far about its multifactorial nature. We also elucidate the roles of different biomarkers for its detection and prognosis, along with appropriate management of such patient population.
-
Objective: The aim of the study is to explore the impact of early serum phosphate levels on the prognosis of critically ill patients with sepsis. Methods: In this retrospective large cohort study, data of patients with sepsis were obtained from the Medical Information Mart for Intensive Care IV database. Patients were retrospectively divided into a control group and three study groups according to their daily serum phosphate levels within 2 days of intensive care unit (ICU) admission. ⋯ After stratification in the hypophosphatemia group, subgroup analysis showed that only the association between the mild hypophosphatemia group and 28-day mortality reached statistical significance (hazard ratio = 0.76, 95% CI = 0.65-0.89, P = 0.001). Conclusions: Mild hypophosphatemia might improve the short-term prognosis of patients with sepsis, and hyperphosphatemia is an independent risk factor for the outcomes of septic patients. After ICU admission, the serum phosphate levels on the second day had a better independent correlation with 28-day mortality, which prompted us to reconsider the optimal timing of phosphate evaluation.
-
Background : Mesenchymal stem cells (MSCs) can be activated by different bacterial toxins. Lipopolysaccharides and Shiga Toxin (Stx) are the main toxins necessary for hemolytic uremic syndrome development. The main etiological event in this disease is endothelial damage that causes glomerular destruction. ⋯ Addition of conditioned media of iPSC-MSC treated with LPS + Stx, decreased the capacity of human microvascular endothelial cells 1 to close a wound, and did not favor tubulogenesis. Proteomic analysis of iPSC-MSC treated with LPS and/or Stx revealed specific protein secretion patterns that support the functional results described. Conclusions : iPSC-MSC activated by LPS acquired a proinflammatory profile that induces migration and adhesion to extracellular matrix proteins but the addition of Stx did not activate any repair program to ameliorate endothelial damage, indicating that the use of iPSC-MSC to regenerate endothelial injury caused by LPS and/or Stx in hemolytic uremic syndrome could not be the best option to consider to regenerate a tissue injury.
-
Randomized Controlled Trial Multicenter Study
Hemoperfusion using the LPS-selective mesoporous polymeric adsorbent in septic shock: a multicenter randomized clinical trial.
Extracorporeal hemoperfusion (EHP) may improve the course and outcomes of patients with septic shock by targeting cytokines or bacterial endotoxins (lipopolysaccharide [LPS]). Here, we present the results of a multicenter randomized controlled trial ( clinicaltrials.gov/ct2/show/NCT04827407 ) to assess the efficiency and safety of Efferon LPS hemoperfusion cartridges engineered for multimodal targeting LPS, host-derived cytokine, and damage-associated molecule pattern molecules. Patients with intra-abdominal sepsis (IAS) and septic shock (Sepsis-3) were subjected to EHP procedures (n = 38). ⋯ Early 3-day mortality was significantly reduced in the Efferon LPS versus control group; however, no significant improvements in survival in 14 and 28 days were revealed. Laboratory tests showed rapidly decreased levels of LPS, procalcitonin, C-reactive protein, IL-6, creatinine, leukocytes, and neutrophils only in the Efferon LPS group. Results demonstrate that EHP with Efferon LPS is a safe procedure to abrogate septic shock and normalize clinical and pathogenically relevant biomarkers in patients with IAS.
-
Objective: Sepsis is a complex disease characterized by an inflammatory response and tissue hypoxia. Hypoxia-inducible factor 1α (HIF-1α) expression level is regulated by hypoxia and inflammation. This study aimed to explore the correlation between HIF-1α expression level and sepsis by bioinformatics analysis and clinical investigation. ⋯ The results of the restricted cubic splines model indicated a U-shaped relationship between HIF-1α expression level and intensive care unit (ICU) mortality. Univariate and multivariate linear regression analyses indicated that septic patients with the elevated HIF-1α expression levels had shorter length of ICU stay versus those with the lower HIF-1α expression levels. Conclusion: Hypoxia-inducible factor 1α expression level can be used for diagnosing disease, assessing severity, and predicting length of ICU stay in septic patients.