Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Objective: The Phoenix sepsis criteria define sepsis in children with suspected or confirmed infection who have ≥2 in the Phoenix Sepsis Score. The adoption of the Phoenix sepsis criteria eliminated the Systemic Inflammatory Response Syndrome criteria from the definition of pediatric sepsis. The objective of this study is to derive and validate machine learning models predicting in-hospital mortality for children with suspected or confirmed infection or who met the Phoenix sepsis criteria for sepsis and septic shock. ⋯ For children with Phoenix sepsis and Phoenix septic shock, the multivariable logistic regression, light gradient boosting machine, random forest, eXtreme Gradient Boosting, support vector machine, multilayer perceptron, and decision tree models predicting in-hospital mortality had AUPRCs of 0.48-0.65 (95% CI range: 0.42-0.66), 0.50-0.70 (95% CI range: 0.44-0.70), 0.52-0.70 (95% CI range: 0.47-0.71), 0.50-0.70 (95% CI range: 0.44-0.70), 0.49-0.67 (95% CI range: 0.43-0.68), 0.49-0.66 (95% CI range: 0.45-0.67), and 0.30-0.38 (95% CI range: 0.28-0.40) and AUROCs of 0.82-0.88 (95% CI range: 0.82-0.90), 0.84-0.88 (95% CI range: 0.84-0.90), 0.81-0.88 (95% CI range: 0.81-0.90), 0.84-0.88 (95% CI range: 0.83-0.90), 0.82-0.87 (95% CI range: 0.82-0.90), 0.80-0.86 (95% CI range: 0.79-0.89), and 0.76-0.82 (95% CI range: 0.75-0.85), respectively. Conclusion: Among children with Phoenix sepsis admitted to a PICU, the random forest model had the best AUPRC for in-hospital mortality compared to the light gradient boosting machine, eXtreme Gradient Boosting, logistic regression, multilayer perceptron, support vector machine, and decision tree models or a Phoenix Sepsis Score ≥ 2. These findings suggest that machine learning methods to predict in-hospital mortality in children with suspected infection predict mortality in a PICU setting with more accuracy than application of the Phoenix sepsis criteria.
-
Background: Noncompressible torso hemorrhage remains a leading cause of potentially preventable deaths. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) has emerged as an adjunct temporizing hemorrhage control. The complete occlusion strategy with the ER-REBOA catheter can cause distal ischemia when used for longer than 30 min. ⋯ The partial aortic occlusion strategy was employed more often in the pREBOA-PRO group (87% vs. 33%, P < 0.05) and for longer periods (59 min vs. 50 min, P < 0.003). In contrast, AKI occurred less frequently in the pREBOA-PRO group (19% vs. 33%, P < 0.05). Conclusions: The more frequently partial and longer occlusion times in Zone 1 with the use of pREBOA-PRO resulted in lower AKI incidence suggesting that this newer device is a safer extended bridge to hemorrhage control.
-
Sepsis results from a dysregulated host immune response to infection and is responsible for ~11 million deaths each year. In the laboratory, many aspects of sepsis can be replicated using a cecal ligation and puncture model, which is considered the most clinically relevant rodent model of sepsis. ⋯ Treatment of mice with 10 μg of a synthetic 68-amino acid peptide derived from an immunomodulatory molecule secreted by a parasitic worm of humans and livestock, F. hepatica , termed F. hepatica helminth defense molecule, potently suppressed the systemic inflammatory profile, protected mice against acute kidney injury, and improved survival between 48 and 72 h after procedure. These results suggest that the anti-inflammatory parasite-derived F. hepatica helminth defense molecule peptide has potential as a biotherapeutic treatment for sepsis.
-
Background : New strategies are needed to mitigate further tissue injury during traumatic limb ischemia in cases requiring damage control resuscitation (DCR). Little is known about the pathophysiology and injury course in acute limb ischemia (ALI) with DCR in polytraumatized casualties. We therefore investigated the effects of therapeutic limb hypothermia in a swine model of ALI and DCR. ⋯ Mean nerve histology scores did not differ between the 5°C and paired control limbs, or between the mean muscle and nerve histology scores of the 15°C and paired control limbs. Conclusion : Cooling to 15°C significantly reduced local tissue metabolites compared to paired controls, while producing no significant increase in histologic damage, whereas cooling to 5°C increased histologic muscle damage. These results suggest an approach to prevention of ischemic injury through local hypothermia but warrant further functional testing.