Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Comparative Study
DIFFERENCES ON IN-HOSPITAL OUTCOMES IN PATIENTS WITH CARDIOGENIC SHOCK DUE TO STEMI VERSUS NSTEMI USING A NATIONWIDE DATABASE.
Background: Our study aims to compare in-hospital management and outcomes in patients with cardiogenic shock due to ST-segment elevation myocardial infarction (STEMI) versus non-ST-segment elevation myocardial infarction (NSTEMI). Methods: We conducted a retrospective cohort study using the National Inpatient Sample database between 2016-2019, including patients with STEMI/NSTEMI complicated by cardiogenic shock. An inverse probability treatment weighting analysis was performed to compare in-hospital management and outcomes between patients with STEMI and NSTEMI. ⋯ Inverse probability treatment weighting analysis showed that in-hospital mortality was significantly higher in the STEMI group compared to NSTEMI (34.2% vs. 28.8%, aRR 1.19, 95% CI 1.14-1.23) and also major bleeding. Conclusion: In conclusion, patients with cardiogenic shock due to STEMI had worse prognosis, higher use of percutaneous coronary intervention/mechanical circulatory support, and major bleeding than the NSTEMI group. In contrast, patients with NSTEMI had greater use of coronary artery bypass grafting and hospital resources.
-
Objective: The Phoenix sepsis criteria define sepsis in children with suspected or confirmed infection who have ≥2 in the Phoenix Sepsis Score. The adoption of the Phoenix sepsis criteria eliminated the Systemic Inflammatory Response Syndrome criteria from the definition of pediatric sepsis. The objective of this study is to derive and validate machine learning models predicting in-hospital mortality for children with suspected or confirmed infection or who met the Phoenix sepsis criteria for sepsis and septic shock. ⋯ For children with Phoenix sepsis and Phoenix septic shock, the multivariable logistic regression, light gradient boosting machine, random forest, eXtreme Gradient Boosting, support vector machine, multilayer perceptron, and decision tree models predicting in-hospital mortality had AUPRCs of 0.48-0.65 (95% CI range: 0.42-0.66), 0.50-0.70 (95% CI range: 0.44-0.70), 0.52-0.70 (95% CI range: 0.47-0.71), 0.50-0.70 (95% CI range: 0.44-0.70), 0.49-0.67 (95% CI range: 0.43-0.68), 0.49-0.66 (95% CI range: 0.45-0.67), and 0.30-0.38 (95% CI range: 0.28-0.40) and AUROCs of 0.82-0.88 (95% CI range: 0.82-0.90), 0.84-0.88 (95% CI range: 0.84-0.90), 0.81-0.88 (95% CI range: 0.81-0.90), 0.84-0.88 (95% CI range: 0.83-0.90), 0.82-0.87 (95% CI range: 0.82-0.90), 0.80-0.86 (95% CI range: 0.79-0.89), and 0.76-0.82 (95% CI range: 0.75-0.85), respectively. Conclusion: Among children with Phoenix sepsis admitted to a PICU, the random forest model had the best AUPRC for in-hospital mortality compared to the light gradient boosting machine, eXtreme Gradient Boosting, logistic regression, multilayer perceptron, support vector machine, and decision tree models or a Phoenix Sepsis Score ≥ 2. These findings suggest that machine learning methods to predict in-hospital mortality in children with suspected infection predict mortality in a PICU setting with more accuracy than application of the Phoenix sepsis criteria.
-
Sepsis results from a dysregulated host immune response to infection and is responsible for ~11 million deaths each year. In the laboratory, many aspects of sepsis can be replicated using a cecal ligation and puncture model, which is considered the most clinically relevant rodent model of sepsis. ⋯ Treatment of mice with 10 μg of a synthetic 68-amino acid peptide derived from an immunomodulatory molecule secreted by a parasitic worm of humans and livestock, F. hepatica , termed F. hepatica helminth defense molecule, potently suppressed the systemic inflammatory profile, protected mice against acute kidney injury, and improved survival between 48 and 72 h after procedure. These results suggest that the anti-inflammatory parasite-derived F. hepatica helminth defense molecule peptide has potential as a biotherapeutic treatment for sepsis.
-
Background : New strategies are needed to mitigate further tissue injury during traumatic limb ischemia in cases requiring damage control resuscitation (DCR). Little is known about the pathophysiology and injury course in acute limb ischemia (ALI) with DCR in polytraumatized casualties. We therefore investigated the effects of therapeutic limb hypothermia in a swine model of ALI and DCR. ⋯ Mean nerve histology scores did not differ between the 5°C and paired control limbs, or between the mean muscle and nerve histology scores of the 15°C and paired control limbs. Conclusion : Cooling to 15°C significantly reduced local tissue metabolites compared to paired controls, while producing no significant increase in histologic damage, whereas cooling to 5°C increased histologic muscle damage. These results suggest an approach to prevention of ischemic injury through local hypothermia but warrant further functional testing.
-
Background: Growing evidence has found the critical role of circular RNAs (circRNAs) in sepsis-induced acute kidney injury (S-AKI). CircTMCO3 has been found to be involved in tumor microenvironment changes of ovarian cancer. This study aimed to explore whether circTMCO3 functions in S-AKI, and if so, to elucidate the molecular mechanism. ⋯ ZEB2 was identified to be a target of miR-218-5p; its downregulation not only reversed the impacts of miR-218-5p inhibitor on S-AKI, but also mitigated the effects mediated by circTMCO3 upregulation in vitro. Conclusions: CircTMCO3 protects against S-AKI by regulating miR-218-5p/ZEB2 axis, thereby mediating antiapoptotic, antioxidant, and anti-inflammatory activities. This indicates that increasing circTMCO3 expression might be a future therapeutic method for S-AKI.