Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Multicenter Study Observational Study
HYPOTENSION AT THE TIME OF SEPSIS RECOGNITION IS NOT ASSOCIATED WITH INCREASED MORTALITY IN SEPSIS PATIENTS WITH NORMAL LACTATE LEVELS.
Background and Objective: Although sepsis is heterogeneous, data on sepsis patients with normal lactate levels are very limited. We explored whether hypotension at the time of sepsis recognition (i.e., time zero) was significant in terms of survival when lactate levels were normal in sepsis patients. Patients and Design: This was a prospective multicenter observational study conducted in 19 hospitals (20 intensive care units [ICUs]). ⋯ In multivariable analysis, the use of appropriate antibiotics and early lactate measurement were significant risk factors for in-hospital mortality. Conclusions: In sepsis patients with normal lactate levels, neither hypotension nor vasopressor use adversely impacted the hospital outcome. Our results emphasize the importance of early interventions and appropriate use of antibiotics regardless of whether a patient is or is not hypotensive.
-
Introduction: A biomarker strategy based on the quantification of an immune profile could provide a clinical understanding of the inflammatory state in patients with sepsis and its potential implications for the bioenergetic state of lymphocytes, whose metabolism is associated with altered outcomes in sepsis. The objective of this study is to investigate the association between mitochondrial respiratory states and inflammatory biomarkers in patients with septic shock. Methods: This prospective cohort study included patients with septic shock. ⋯ Delta complex II respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.261; P = 0.042). Delta complex I respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.346; P = 0.006), and delta routine respiration was also negatively correlated with both delta IL-10 (Spearman ρ, -0.257; P = 0.046) and delta IL-6 (Spearman ρ, -0.32; P = 0.012). Conclusions: The metabolic change observed in mitochondrial complex I and complex II of lymphocytes is associated with a decrease in IL-6 levels, which can signal a decrease in global inflammatory activity.
-
Background: Interleukin (IL)-6 is a multifunctional cytokine with both a proinflammatory and anti-inflammatory role. In many studies, IL-6 increases rapidly after burn injury and is associated with poor outcomes. However, there are two aspects to IL-6; it can signal via its soluble IL-6 receptor (sIL-6R), which is referred to as trans-signaling and is regarded as the proinflammatory pathway. ⋯ Using sIL-6R as a marker for the proinflammatory immune response, we expected patients with a lower IL-6/sIL-6R ratio to have poor outcomes, typically associated with a hyperinflammatory or exaggerated immune response. However, the absolute value of sIL-6R did not differ. This suggests that classical signaling of IL-6 via its membrane-bound receptor, with an anti-inflammatory function, is important.
-
Sepsis is a major health issue and a leading cause of death in hospitals globally. The treatment of sepsis is largely supportive, and there are no therapeutics available that target the underlying pathophysiology of the disease. The development of therapeutics for the treatment of sepsis is hindered by the heterogeneous nature of the disease. ⋯ However, there has been limited studies of immune cell function during sepsis and even fewer correlating omics and biomarker alterations to functional consequences. In this review, we will discuss how the heterogeneity of sepsis and associated immune cell phenotypes result from changes in the omic makeup of cells and its correlation with leukocyte dysfunction. We will also discuss how emerging techniques such as in silico modeling and machine learning can help in phenotyping sepsis patients leading to precision medicine.
-
Injuries lead to an early systemic inflammatory state with innate immune system activation. Neutrophil extracellular traps (NETs) are a complex of chromatin and proteins released from the activated neutrophils. Although initially described as a response to bacterial infections, NETs have also been identified in the sterile postinjury inflammatory state. ⋯ Neutrophil extracellular trap formation and PAD activation have been shown to contribute to the postinjury inflammatory state leading to a detrimental effect on organ systems. This review describes our current understanding of the role of PAD and NET formation following injury and burn. This is a new field of study, and the emerging data appear promising for the future development of targeted biomarkers and therapies in trauma.