American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · Nov 2023
Association of GLP-1 Receptor Agonists with COPD Exacerbations Among Patients with Type 2 Diabetes.
Rationale: Patients with chronic obstructive pulmonary disease (COPD) and type 2 diabetes (T2D) have worse clinical outcomes compared with patients without metabolic dysregulation. GLP-1 (glucagon-like peptide 1) receptor agonists (GLP-1RAs) reduce asthma exacerbation risk and improve FVC in patients with COPD. Objectives: To determine whether GLP-1RA use is associated with reduced COPD exacerbation rates, and severe and moderate exacerbation risk, compared with other T2D therapies. ⋯ No statistically significant difference in exacerbation outcomes was seen between GLP-1RA and SGLT2 inhibitor users. Conclusions: Prospective studies of COPD exacerbations in patients with comorbid T2D are warranted. Additional research may elucidate the mechanisms underlying these observed associations with T2D medications.
-
Am. J. Respir. Crit. Care Med. · Nov 2023
Indoor Pollution and Lung Function Decline in Current and Former Smokers: SPIROMICS AIR.
Rationale: Indoor pollutants have been associated with chronic obstructive pulmonary disease morbidity, but it is unclear whether they contribute to disease progression. Objectives: We aimed to determine whether indoor particulate matter (PM) and nitrogen dioxide (NO2) are associated with lung function decline among current and former smokers. Methods: Of the 2,382 subjects with a history of smoking in SPIROMICS AIR, 1,208 participants had complete information to estimate indoor PM and NO2, using individual-based prediction models, in relation to measured spirometry at two or more clinic visits. ⋯ The results of indoor NO2 suggest trends similar to those for PM ⩽2.5 μm in aerodynamic diameter. Conclusions: Former smokers with chronic obstructive pulmonary disease who live in homes with high estimated PM have accelerated lung function loss, and those in homes with low PM have lung function loss similar to normal aging. In-home PM exposure may contribute to variability in lung function decline in people who quit smoking and may be a modifiable exposure.