Psychonomic bulletin & review
-
Although engaging in task-unrelated thoughts can be enjoyable and functional under certain circumstances, allowing one's mind to wander off-task will come at a cost to performance in many situations. Given that task-unrelated thoughts need to be blocked out when the current task requires full attention, it has been argued that cognitive control is necessary to prevent mind-wandering from becoming maladaptive. Extending this idea, we exposed participants to tasks of different demands and assessed mind-wandering via thought probes. ⋯ As hypothesized, the degree of adjustment was predicted by working memory capacity, indicating that participants with higher working memory capacity were more flexible in their coordination of on- and off-task thoughts. Notably, the better the adjustment, the smaller performance decrements due to increased task demands were. On the basis of these findings, we argue that cognitive control does not simply allow blocking out task-unrelated thoughts but, rather, allows one to flexibly adjust mind-wandering to situational demands.
-
A long-standing debate surrounds the issue of whether human and nonhuman animals share the same perceptual mechanisms. In humans, the Zöllner illusion occurs when two parallel lines appear to be convergent when oblique crosshatching lines are superimposed. Although one baboon study suggests that they too might perceive this illusion, the results of that study were unclear, whereas two recent studies suggest that birds see this illusion in the opposite direction from humans. ⋯ Monkeys that reached the training criterion were tested with more difficult discriminations (11°-1°), including probe trials with parallel lines (0°). The results showed that monkeys perceived the Zöllner illusion in the same direction as humans. Comparison of these data with the data from bird studies points toward the existence of different orientation-tuned mechanisms between primate and nonprimate species.
-
In this study, we investigated whether the meanings of radicals are involved in reading ideogrammic compounds in a spatial Stroop task. We found spatial Stroop effects of similar size for the simple characters [symbol: see text] ("up") and [symbol: see text] ("down") and for the complex characters [symbol: see text] ("nervous") and [symbol: see text] ("nervous"), which are ideogrammic compounds containing a radical [symbol: see text] or [symbol: see text], in Experiments 1 and 2. ⋯ Thus, the spatial Stroop effect emerges in the processing of radicals just as it does for processing simple characters. This finding suggests that when reading ideogrammic compounds, (a) their radicals' meanings can be processed and (b) ideogrammic compounds have little or no influence on their radicals' semantic processing.
-
Advancing age is associated with decrements in selective attention. It was recently hypothesized that age-related differences in selective attention depend on sensory modality. ⋯ The results showed that response interference effects differ across sensory modalities, but not across age groups. These results indicate that sensory modality plays an important role in vulnerability to distraction, but not in age-related distractibility by irrelevant spatial information.
-
Research on the perception of temporal order uses either temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks, in both of which two stimuli are presented with some temporal delay and observers must judge the order of presentation. Results generally differ across tasks, raising concerns about whether they measure the same processes. We present a model including sensory and decisional parameters that places these tasks in a common framework that allows studying their implications on observed performance. ⋯ The model is also tested against published data on audiovisual temporal-order judgments, and the fit is satisfactory, although model parameters are more accurately estimated with SJ tasks. Measures of latent point of subjective simultaneity and latent sensitivity are defined that are invariant across tasks by isolating the sensory parameters governing observed performance, whereas decisional parameters vary across tasks and account for observed differences across them. Our analyses concur with other evidence advising against the use of TOJ tasks in research on perception of temporal order.