Current opinion in pulmonary medicine
-
The purpose of this review is to summarize the recent approaches using mutation-specific therapy to correct the genetic defect according to the molecular mechanism by which the mutation causes the defects in cystic fibrosis transmembrane conductance regulator (CFTR). Premature stop mutations (class I mutations) account for 5 to 10% of the total mutant alleles in cystic fibrosis patients, and in certain subpopulations the incidence is much higher. ⋯ It is as yet unknown how much corrected mutant CFTR must reach the apical membrane to induce a clinically relevant beneficial effect. The future goal is to maximize the effect of stop-codon supressors on CFTR while minimizing side effects, but further studies must be performed to find a safer compound that may be administered in small children from the time of diagnosis.