Current opinion in critical care
-
To discuss the role of measuring functional residual capacity (FRC) during mechanical ventilation to improve patient ventilator settings in order to prevent ventilator-induced lung injury. ⋯ In conclusion, measuring FRC could be extremely valuable during mechanical ventilation, but clinical studies are needed to prove whether this technique will improve outcome.
-
The ultimate purpose of fluid administration in states of hypovolemia is to correct cardiac output to improve microcirculatory perfusion and tissue oxygenation. Observation of the microcirculation using handheld microscopes gives insight into the nature of convective and diffusive defect in hypovolemia. The purpose of this article is to introduce a new platform for hemodynamic-targeted fluid therapy based on the correction of tissue and microcirculatory perfusion assumed to be at risk during hypovolemia. ⋯ We hypothesized that the optimal amount of fluid needed for correction of hypovolemia is defined by a physiologically based functional microcirculatory hemodynamic platform where convection and diffusion need to be optimized. Future clinical trials using handheld microscopes able to automatically evaluate the microcirculation at the bedside will show whether such a platform will indeed optimize fluid therapy.
-
Spontaneous breathing has been shown to induce both positive and negative effects on the function and on injury of lungs and diaphragm during critical illness; thus, monitoring of the breathing effort generated by the patient might be valuable for a better understanding of the mechanisms of disease and to set properly ventilation. The purpose of this review is to summarize the recent findings on the different techniques available to measure the patient's breathing effort, mainly during spontaneous assisted ventilation. ⋯ The development of measurement techniques and their introduction in clinical practice will allow us to understand the role of spontaneous breathing effort in the pathophysiology of lung injury and weaning failure, and how to adjust the breathing workload in an individual patient.
-
Curr Opin Crit Care · Jun 2014
ReviewElectrical impedance tomography imaging of the cardiopulmonary system.
This review article summarizes the recent advances in electrical impedance tomography (EIT) related to cardiopulmonary imaging and monitoring on the background of the 30-year development of this technology. ⋯ EIT is not routinely used in a clinical setting, but the interest in EIT is evident. The major task for EIT research is to provide the clinicians with guidelines how to conduct, analyse and interpret EIT examinations and combine them with other medical techniques so as to meaningfully impact the clinical decision-making.
-
Studies in patients with acute respiratory distress syndrome (ARDS) have been unable to demonstrate a survival advantage with higher levels of positive end-expiratory pressure (PEEP) to open atelectatic lung regions or prevent their cyclic collapse. This review will discuss the challenges of accurately measuring pleural pressure with balloon-tipped catheters in the oesophagus, and the utility of such pressure monitoring to set PEEP and assess lung mechanics, focusing on patients with ARDS. ⋯ Changes in oesophageal pressure likely accurately reflect global changes in pleural pressure in supine patients with ARDS. However, absolute oesophageal pressure values in such patients may be subject to local artefacts and may substantially overestimate pleural pressure in other lung regions. Setting PEEP high enough to achieve a targeted end-expiratory transpulmonary pressure in the region of the oesophageal balloon catheter could overdistend other lung regions. Measurement of oesophageal pressure is feasible, but its clinical utility to titrate PEEP, compared with routine assessment, awaits experimental confirmation.