Current opinion in critical care
-
Recent studies have focused on identifying optimal targets and strategies of mechanical ventilation in patients with acute brain injury (ABI). The present review will summarize these findings and provide practical guidance to titrate ventilatory settings at the bedside, with a focus on managing potential brain-lung conflicts. ⋯ Although direct data to guide mechanical ventilation in brain-injured patients is accumulating, the current evidence base remains limited. Ventilatory considerations in this population should be extrapolated from high-quality evidence in patients without brain injury - keeping in mind relevant effects on intracranial pressure and cerebral perfusion in patients with ABI and individualizing the chosen strategy to manage brain-lung conflicts where necessary.
-
Muscle wasting in critical illness has proven to be refractory to physical rehabilitation, and to conventional nutritional strategies. This presents one of the central challenges to critical care medicine in the 21st century. Novel strategies are needed that facilitate nutritional interventions, identify patients that will benefit and have measurable, relevant benefits. ⋯ The evidence base for the lack of efficacy for conventional nutritional strategies in preventing muscle wasting in critically ill patients continues to grow. Novel strategies such as metabolic modulators, patient level biological signatures of nutritional response and standardized outcome for measurements of efficacy will be central to future research and clinical care of the critically ill patient.
-
To summarize recent research on critical care nutrition focusing on the optimal composition, timing, and monitoring of enteral feeding strategies for (post)-ICU patients. We provide new insights on energy and protein recommendations, feeding intolerance, and describe nutritional practices for coronavirus disease 2019 ICU patients. ⋯ Nutritional therapy should be adapted to the patient's characteristics, diagnosis, and state of metabolism during ICU stay and convalescence. A personalized nutrition plan may prevent harmful over- or underfeeding and attenuate muscle loss. Despite novel insights, more research is warranted into tailored nutrition strategies during critical illness and convalescence.
-
Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, is a leading cause of hospital and ICU admission. The central and peripheral nervous system may be the first organ system to show signs of dysfunction, leading to clinical manifestations such as sepsis-associated encephalopathy (SAE) with delirium or coma and ICU-acquired weakness (ICUAW). In the current review, we want to highlight developing insights into the epidemiology, diagnosis, prognosis, and treatment of patients with SAE and ICUAW. ⋯ In this manuscript, we provide an overview of recent insights and developments in the prevention, diagnosis, and treatment of patients with SAE and ICUAW.