Current opinion in critical care
-
Study of organ crosstalk in critical illness has uncovered complex biological communication between different organ systems, but the role of microbiota in organ crosstalk has received limited attention. We highlight the emerging understanding of the gut-lung axis, and how the largest biomass of the human body in the gut may affect lung physiology in critical illness. ⋯ A growing body of evidence supports the pathophysiological relevance of the gut-lung axis, yet we are only at the brink of understanding the therapeutic and prognostic relevance of the gut microbiome, metabolites and host-microbe interactions in critical illness.
-
Many critically ill patients face physical, mental or neurocognitive impairments up to years later, the etiology remaining largely unexplained. Aberrant epigenetic changes have been linked to abnormal development and diseases resulting from adverse environmental exposures like major stress or inadequate nutrition. Theoretically, severe stress and artificial nutritional management of critical illness thus could induce epigenetic changes explaining long-term problems. We review supporting evidence. ⋯ Epigenetic abnormalities induced by critical illness or its nutritional management provide a plausible molecular basis for their adverse effects on long-term outcomes. Identifying treatments to further attenuate these abnormalities opens perspectives to reduce the debilitating legacy of critical illness.
-
Curr Opin Crit Care · Apr 2023
ReviewDiarrhea in the critically ill: definitions, epidemiology, risk factors and outcomes.
In this paper, we review the current evidence with respect to definitions, risk factors, and outcomes of diarrhea in the critically ill and highlight research gaps in the literature. ⋯ Diarrhea remains a common problem in clinical practice and attention must be paid to modifiable risk factors. Further research is needed on interventions to decrease its burden.
-
Curr Opin Crit Care · Apr 2023
ReviewBeyond intracranial pressure: monitoring cerebral perfusion and autoregulation in severe traumatic brain injury.
Severe traumatic brain injury (TBI) remains the most prevalent neurological condition worldwide. Observational and interventional studies provide evidence to recommend monitoring of intracranial pressure (ICP) in all severe TBI patients. Existing guidelines focus on treating elevated ICP and optimizing cerebral perfusion pressure (CPP), according to fixed universal thresholds. However, both ICP and CPP, their target thresholds, and their interaction, need to be interpreted in a broader picture of cerebral autoregulation, the natural capacity to adjust cerebrovascular resistance to preserve cerebral blood flow in response to external stimuli. ⋯ Today, there is no gold standard available to estimate cerebral autoregulation. Cerebral autoregulation can be triggered by performing a mean arterial pressure (MAP) challenge, in which MAP is increased by 10% for 20 min. The response of ICP (increase or decrease) will estimate the status of cerebral autoregulation and can steer therapy mainly concerning optimizing patient-specific CPP. The role of cerebral metabolic changes and its relationship to cerebral autoregulation is still unclear and awaits further investigation.