Experimental neurology
-
Experimental neurology · Oct 2004
Clodronate inhibits the secretion of proinflammatory cytokines and NO by isolated microglial cells and reduces the number of proliferating glial cells in excitotoxically injured organotypic hippocampal slice cultures.
Treatment of excitotoxically injured organotypic hippocampal slice cultures (OHSC) with clodronate is known to result in the inhibition of microglial activation. We hypothesized that this is due to direct effects of clodronate on microglial cells, and investigated microglial proliferation in OHSC, and cytokine and NO secretion in isolated microglial cells. N-methyl-D-aspartate (NMDA) lesioning of OHSC resulted in a massive increase in the number of proliferating, bromo-desoxy-uridine (BrdU)-labeled cells that was reduced to control levels after treatment with clodronate (0.1, 1, 10 microg/ml). ⋯ In summary, the number of proliferating microglial cells and astrocytes after excitotoxic injury is reduced to control levels after treatment with clodronate. Furthermore, clodronate inhibits microglial secretion of proinflammatory cytokines and NO. Clodronate could therefore prove to be a useful tool in the investigation of interactions between damaged neurons and microglial cells.
-
Experimental neurology · Oct 2004
Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease.
The subthalamic nucleus (STN) has a key role in the pathophysiology of Parkinson's disease and is the primary target for high-frequency deep brain stimulation (DBS). The STN rest electrical activity in Parkinson's disease, however, is still unclear. Here we tested the hypothesis that pharmacological modulation of STN activity has rhythm-specific effects in the classical range of EEG frequencies, below 50 Hz. ⋯ Power changes elicited by levodopa and apomorphine at low frequencies and in the beta range were not correlated, whereas changes in the alpha band, which were globally not significant, correlated with the beta rhythm (namely, low beta: 13-20 Hz). In conclusion, in the human STN, there are at least two rhythms below 50 Hz that are separately modulated by antiparkinsonian medication: one at low frequencies and one in the beta range. Multiple rhythms are consistent with the hypothesis of multiple oscillating systems, each possibly correlating with specific aspects of human STN function and dysfunction.
-
Experimental neurology · Oct 2004
A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury.
The present study investigated neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF), a distant member of the transforming growth factor-beta (TGF-beta) superfamily, following moderate contusive spinal cord injury (SCI) in adult rats. A T11 spinal cord contusion injury was made using an Infinite Horizon impactor (IH; impact force=150 kDyn) and recombinant human GDNF at two concentrations (rhGDNF; 1 or 5 microg/microl), or saline vehicle was delivered intrathecally for 28 days using an Alzet miniosmotic pump. We demonstrated that, at 7 weeks postinjury, GDNF infusion significantly reduced the total lesion volume by 34-42% (assessed stereologically) and increased the percentage of white matter sparing by 10-13% (measured at the injury epicenter), as compared to the vehicle infusion. ⋯ However, transcranial magnetic motor-evoked potential (tcMMEP) assessment revealed no significant difference in onset latency and amplitude between the GDNF- and vehicle-infused groups. These results suggest that GDNF has a strong neuroprotective effect on white matter sparing and the sparing of a subset of proprio- and supraspinal axons following injury. However, a return of tcMMEPs requires the sparing and/or myelination of axons in a defined region of the white matter which was either not spared or remyelinated at this level of injury severity.
-
Experimental neurology · Oct 2004
Regulation of dopamine receptor and neuropeptide expression in the basal ganglia of monkeys treated with MPTP.
In Parkinson's disease (PD), striatal dopamine deficiency has been associated with complex changes in the functional and neurochemical anatomy of the basal ganglia. In this study, we simultaneously analyzed the regulation of D1 and D2 dopamine receptors and levels of the neuropeptides, substance P, and enkephalin (ENK) in various basal ganglia nuclei following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic denervation of striatum in nonhuman primates. Both unilateral and bilateral lesioned animals were used for this study. ⋯ All the changes were more pronounced in the bilateral lesioned monkeys, though the data represent a pooled statistical evaluation of unilateral and bilateral lesioned monkeys. Our studies indicate that D1 and D2 dopamine receptors and substance P and enkephalin undergo regulatory changes in response to nigrostriatal dopamine denervation. Simultaneous study of the alterations in these various components of the 'direct' and 'indirect' pathways in the same animals will enable better understanding of the pathophysiology of PD and its therapeutic targets.
-
Experimental neurology · Sep 2004
Comparative StudyAgmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury.
Agmatine is a primary amine formed by the decarboxylation of L-arginine synthesized in mammalian brain. In this study, we investigated the neuroprotective effect of agmatine on ischemic and ischemia-like insults. Primary cortical neuronal cultures were subjected to oxygen-glucose deprivation (OGD), a model of ischemia-like injury, and treated with agmatine before or at the start of OGD, or upon reperfusion. ⋯ The number of nNOS immunopositive cells was correlated with neuroprotection. Interestingly, immunoreactivity for iNOS was reduced only when agmatine was administered before and at the onset of MCAO. Our study suggests that agmatine may be a novel therapeutic strategy to reduce cerebral ischemic injury, and may act by inhibiting the detrimental effects of nNOS.