Experimental neurology
-
Experimental neurology · Sep 2015
Chondroitinase gene therapy improves upper limb function following cervical contusion injury.
Chondroitin sulphate proteoglycans (CSPGs) are known to be important contributors to the intensely inhibitory environment that prevents tissue repair and regeneration following spinal cord injury. The bacterial enzyme chondroitinase ABC (ChABC) degrades these inhibitory molecules and has repeatedly been shown to promote functional recovery in a number of spinal cord injury models. However, when used to treat more traumatic and clinically relevant spinal contusion injuries, findings with the ChABC enzyme have been inconsistent. ⋯ This is an important addition to our previous findings as improving upper limb function is a top priority for spinal injured patients. Additionally great importance is placed on replication in the spinal cord injury field. That chondroitinase gene therapy has now been shown to be efficacious in contusion models at either thoracic or cervical level is an important step in the further development of this promising therapeutic strategy towards the clinic.
-
Experimental neurology · Sep 2015
Evaluation of the anatomical and functional consequences of repetitive mild cervical contusion using a model of spinal concussion.
Spinal cord concussion is characterized by a transient loss of motor and sensory function that generally resolves without permanent deficits. Spinal cord concussions usually occur during vehicular accidents, falls, and sport activity, but unlike brain concussions, have received much less attention despite the potential for repeated injury leading to permanent neurological sequelae. Consequently, there is no consensus regarding decisions related to return to play following an episode of spinal concussion, nor an understanding of the short- and long-term consequences of repeated injury. ⋯ Macrophages accumulated within the injured, dorsal and ipsilateral spinal cord, with significant increases at 2 and 3mm rostral to the epicenter in the C2 group. Our model is designed to represent the clinical presentation of spinal cord concussion, and highlight the susceptibility and functional sequelae of repeated injury. Future experiments will examine the temporal and spatial windows of vulnerability for repeated injuries.
-
Experimental neurology · Sep 2015
A potent and selective calcitonin gene-related peptide (CGRP) receptor antagonist, MK-8825, inhibits responses to nociceptive trigeminal activation: Role of CGRP in orofacial pain.
Temporomandibular disorders (TMDs) are orofacial pains within the trigeminal distribution, which involve the masticatory musculature, the temporomandibular joint or both. Their pathophysiology remains unclear, as inflammatory mediators are thought to be involved, and clinically TMD presents pain and sometimes limitation of function, but often appears without gross indications of local inflammation, such as visible edema, redness and increase in temperature. Calcitonin gene-related peptide (CGRP) has been implicated in other pain disorders with trigeminal distribution, such as migraine, of which TMD shares a significant co-morbidity. ⋯ There was no effect of MK-8825 on the release of IL-6. These data suggest that CGRP may be involved in TMD pathophysiology, but not via inflammatory mechanisms, at least in the acute stage. Furthermore, CGRP receptor antagonists may have therapeutic efficacy in the treatment of TMD, as they do with migraine.
-
Experimental neurology · Jul 2015
Large animal and primate models of spinal cord injury for the testing of novel therapies.
Large animal and primate models of spinal cord injury (SCI) are being increasingly utilized for the testing of novel therapies. While these represent intermediary animal species between rodents and humans and offer the opportunity to pose unique research questions prior to clinical trials, the role that such large animal and primate models should play in the translational pipeline is unclear. In this initiative we engaged members of the SCI research community in a questionnaire and round-table focus group discussion around the use of such models. ⋯ While testing within these models should not be mandatory, the detection of beneficial effects using these models lends additional support for translating a therapy to humans. These models provides an opportunity to evaluate and refine surgical procedures prior to use in humans, and safety and bio-distribution in a spinal cord more similar in size and anatomy to that of humans. Our results reveal that while many feel that these models are valuable in the testing of novel therapies, important questions remain unanswered about how they should be used and how data derived from them should be interpreted.
-
Experimental neurology · Jul 2015
ReviewChondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system.
Chondroitin Sulfate Proteoglycans (CSPGs) are a major component of the extracellular matrix in the central nervous system (CNS) and play critical role in the development and pathophysiology of the brain and spinal cord. Developmentally, CSPGs provide guidance cues for growth cones and contribute to the formation of neuronal boundaries in the developing CNS. Their presence in perineuronal nets plays a crucial role in the maturation of synapses and closure of critical periods by limiting synaptic plasticity. ⋯ Moreover, the recent discovery of multiple receptors for CSPGs provides new therapeutic targets for targeted interventions in blocking the inhibitory properties of CSPGs following injury. Here, we will provide an in depth discussion on the impact of CSPGs in normal and pathological CNS. We will also review the recent preclinical therapies that have been developed to target CSPGs in the injured CNS.