Experimental neurology
-
Experimental neurology · Feb 2020
Increased severity of the CHIMERA model induces acute vascular injury, sub-acute deficits in memory recall, and chronic white matter gliosis.
Traumatic brain injury (TBI) is a leading cause of death and disability in modern societies. Diffuse axonal and vascular injury are nearly universal consequences of mechanical energy impacting the head and contribute to disability throughout the injury severity spectrum. CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a non-surgical, impact-acceleration model of rodent TBI that reliably produces diffuse axonal injury characterized by white matter gliosis and axonal damage. ⋯ Memory deficits were evident at 30 d and resolved by 60 d. Intriguingly, white matter injury was not remarkable at acute time points but evolved over time, with white matter gliosis being most extensive at 60 d. Interface-assisted CHIMERA thus enables experimental modeling of distinct endophenotypes of TBI that include acute vascular and grey matter injury in addition to chronic evolution of white matter damage, similar to the natural history of human TBI.
-
Experimental neurology · Jan 2020
Paradoxical effects of continuous high dose gabapentin treatment on autonomic dysreflexia after complete spinal cord injury.
Spinal cord injury (SCI) can have profound effects on the autonomic and cardiovascular systems, notably with injuries above high-thoracic levels that result in the development of autonomic dysreflexia (AD) characterized by volatile hypertension in response to exaggerated sympathetic reflexes triggered by afferent stimulation below the injury level. Pathophysiological changes associated with the development of AD include sprouting of both nociceptive afferents and ascending propriospinal 'relay' neurons below the injury, as well as dynamic changes in synaptic inputs onto sympathetic preganglionic neurons. However, it remains uncertain whether synapse formation between sprouted c-fibers and propriospinal neurons contributes to the development of exaggerated sympathetic reflexes produced during AD. ⋯ While there were significant decreases in the densities of excitatory and inhibitory pre-synaptic markers in the lumbosacral dorsal horn following injury alone, they were unaltered by continuous GBP treatment. This indicates distinct mechanisms of action for acute GBP to mitigate induced AD whereas chronic GBP increases non-induced AD frequencies. While high dose prophylactic GBP is not recommended to treat AD, acute low dose GBP may hold therapeutic value to mitigate evoked AD, notably during iatrogenic procedures under controlled clinical conditions.
-
Experimental neurology · Jan 2020
ReviewNeural-respiratory inflammasome axis in traumatic brain injury.
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. Approximately 20-25% of TBI subjects develop Acute Lung Injury (ALI), but the pathomechanisms of TBI-induced ALI remain poorly defined. Currently, mechanical ventilation is the only therapeutic intervention for TBI-induced lung injury. ⋯ Here, we outline the role of the extracellular vesicle (EV)-mediated inflammasome signaling in the etiology of TBI-induced ALI. Furthermore, we evaluate the efficacy of a low molecular weight heparin (Enoxaparin, a blocker of EV uptake) and a monoclonal antibody against apoptosis speck-like staining protein containing a caspase recruitment domain (anti-ASC) as therapeutics for TBI-induced lung injury. We demonstate that activation of an EV-mediated Neural-Respiratory Inflammasome Axis plays an essential role in TBI-induced lung injury and disruption of this axis has therapeutic potential as a treatment strategy.
-
Experimental neurology · Dec 2019
Neuroimmunological characterization of a mouse model of primary progressive experimental autoimmune encephalomyelitis and effects of immunosuppressive or neuroprotective strategies on disease evolution.
Progressive multiple sclerosis (PMS) is a devastating disorder sustained by neuroimmune interactions still wait to be identified. Recently, immune-independent, neural bioenergetic derangements have been hypothesized as causative of neurodegeneration in PMS patients. To gather information on the immune and neurodegenerative components during PMS, in the present study we investigated the molecular and cellular events occurring in a Non-obese diabetic (NOD) mouse model of experimental autoimmune encephalomyelitis (EAE). ⋯ However, the mitochondria boosting drugs, bezafibrate and biotin, were unable to reduce disability progression. Data suggest that EAE NOD mice recapitulate some features of PMS. Also, by showing that bezafibrate or biotin do not affect progression in NOD mice, our study suggests that this model can be harnessed to anticipate experimental information of relevance to innovative treatments of PMS.
-
Experimental neurology · Nov 2019
Early TLR4 inhibition reduces hippocampal injury at puberty in a rat model of neonatal hypoxic-ischemic brain damage via regulation of neuroimmunity and synaptic plasticity.
Neonatal hypoxic-ischemic brain damage (HIBD) survivors present with long-term neurological disorders affecting their quality of life, and there remains a lack of effective treatment. Toll-like receptor 4 (TLR4) is widely distributed in nerve cells and its inhibition has a neuroprotective effect against brain injury. The present study aimed to evaluate the long-term neuroprotective effects of early inhibition of TLR4 during HIBD. ⋯ Western blot and RT-PCR results indicated that the expression of NR2A protein and mRNA in the ipsilateral hippocampi of adolescent rats decreased after neonatal HIBD; early TAK-242 administration may reverse these effects. In conclusion, our findings indicate that early inhibition of TLR4 signalling may improve the long-term prognosis of neonatal HIBD. The mechanisms contributing to this improvement involve reductions in neuronal loss, a decrease in glial cell activation, and an improvement in synaptic plasticity.