Experimental neurology
-
Experimental neurology · Feb 2015
Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury.
Transplantation of neural progenitor cells (NPCs) may be a potential treatment strategy for traumatic brain injury (TBI) due to their intrinsic advantages, including the secretion of neurotrophins. Neurotrophins are critical for neuronal survival and repair, but their clinical use is limited. In this study, we hypothesized that pericontusional transplantation of NPCs genetically modified to secrete a synthetic, human multineurotrophin (MNTS1) would overcome some of the limitations of traditional neurotrophin therapy. ⋯ Transplant recipients exhibited escape latencies approximately half that of injured vehicle controls. While we observed greater transplant survival and neuronal differentiation of MNTS1-NPCs, our collective findings suggest that MNTS1 may be superfluous in terms of preserving the cytoarchitecture and rescuing behavioral deficits given the lack of significant difference between MNTS1- and GFP-control transplanted groups. Nevertheless, our overall findings support the potential of syngeneic NPC transplantation to enhance endogenous neuroreparative responses and may therefore be an effective treatment for TBI.
-
Experimental neurology · Feb 2015
Desmoplakin is involved in organization of an adhesion complex in peripheral nerve regeneration after injury.
Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. In this study, we analyzed the expression and function of desmoplakin in peripheral nerve regeneration. ⋯ A complex of N-cadherin, plakoglobin, desmoplakin and vimentin was shown in motoneuronal cell cultures and peripheral nerves after injury in vivo. Motor nerve fiber regeneration and localization of N-cadherin and vimentin to axonal growth fronts were reduced in conditionally desmoplakin-ablated mice. These data indicate a function of desmoplakin in motor nerve regeneration by linking N-cadherin to intermediate filaments in regenerating motor axons.
-
Experimental neurology · Jan 2015
Postnatal glucocorticoid-induced hypomyelination, gliosis, and neurologic deficits are dose-dependent, preparation-specific, and reversible.
Postnatal glucocorticoids (GCs) are widely used in the prevention of chronic lung disease in premature infants. Their pharmacologic use is associated with neurodevelopmental delay and cerebral palsy. However, the effect of GC dose and preparation (dexamethasone versus betamethasone) on short and long-term neurological outcomes remains undetermined, and the mechanisms of GC-induced brain injury are unclear. ⋯ Hence, high-dose, but not low-dose, postnatal GC causes reversible reductions in myelination and motor functions. GC treatment induces hypomyelination by GR-dependent genomic mechanisms, but astrogliosis by non-genomic mechanisms. GC-induced motor impairment and neurodevelopmental delay might be transient and recover spontaneously in premature infants.
-
Experimental neurology · Jan 2015
Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia.
Mild elevations in core temperature can occur in individuals involved in strenuous activities that are risky for potentially sustaining a mild traumatic brain injury (mTBI) or concussion. Recently, we have discovered that mild elevations in brain temperature can significantly aggravate the histopathological consequences of mTBI. However, whether this exacerbation of brain pathology translates into behavioral deficits is unknown. ⋯ These results indicate that brain temperature is an important variable for mTBI outcome and that mildly elevated temperatures at the time of injury result in persistent cognitive deficits. Importantly, cooling to normothermia after mTBI prevents the development of long-term cognitive deficits caused by hyperthermia. Reducing temperature to normothermic levels soon after mTBI represents a rational approach to potentially mitigate the long-term consequences of mTBI.
-
Experimental neurology · Jan 2015
The α7 nicotinic receptor agonist ABT-107 protects against nigrostriatal damage in rats with unilateral 6-hydroxydopamine lesions.
The finding that smoking is inversely correlated with Parkinson's disease and that nicotine attenuates nigrostriatal damage in Parkinsonian animals supports the idea that nicotine may be neuroprotective. Nicotine is thought to exert this effect by acting at nicotinic receptors (nAChRs), including the α7 subtype. The objective of this study was twofold: first, to test the protective potential of ABT-107, an agonist with high selectivity for α7 nAChRs; and second, to investigate its cellular mechanism of action. ⋯ ABT-107 or nicotine treatment significantly increased DAT levels in lesioned striatum; these drugs did not alter DAT levels in intact striatum. ABT-107 and nicotine also significantly improved basal dopamine release from lesioned striatum, as well as nicotine-stimulated dopamine release mediated via α4β2* and α6β2* nAChRs. These data suggest that α7 nAChR agonists may improve motor behaviors associated with nigrostriatal damage by enhancing striatal dopaminergic function.