The international journal of biochemistry & cell biology
-
Int. J. Biochem. Cell Biol. · Jan 2009
ReviewPotential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases.
Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that this activity of turmeric is due to curcumin (diferuloylmethane). ⋯ The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various proinflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further.
-
Int. J. Biochem. Cell Biol. · Jan 2008
ReviewHuman H5N1 influenza: current insight into pathogenesis.
Since their emergence as avian (1996) and zoonotic human pathogens (1997), H5N1 influenza viruses have become endemic among poultry in large parts of Asia, but outbreaks have also been seen in Africa and Europe. Transmission from animals to humans remains sporadic, but mortality of human infection is high (63%). ⋯ Therefore, in the management of H5N1 disease (early) suppression of viral replication is key. The underlying biochemistry and cell biology of H5N1 pathogenesis and treatment are briefly discussed in this review.
-
Int. J. Biochem. Cell Biol. · Jan 2007
ReviewAcute promyelocytic leukemia: new issues on pathogenesis and treatment response.
Pathogenesis of acute promyelocytic leukemia appears to be one of the best understood among human malignancies. The ability of retinoic acid (RA) and arsenic trioxide to directly target the oncogenic promyelocytic leukemia-retinoic receptor A (PML-RARA) fusion protein also made this disease the first model for oncogene-targeted therapies. A set of recent data has significantly increased the complexity of our view of acute promyelocytic leukemia pathogenesis, as well as of therapeutic response. This review summarizes and discusses these findings, which yield novels questions and models.
-
Int. J. Biochem. Cell Biol. · Jan 2007
ReviewRational bases for the development of EGFR inhibitors for cancer treatment.
Growth factor receptors and their ligands not only regulate normal cell processes but have been also identified as key regulators of human cancer formation. The epidermal growth factor receptor (EGFR/ErbB1/HER1) belongs to the ErbB/HER-family of tyrosine kinase receptors (RTKs). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. ⋯ As a result, investigators have developed approaches to inhibit the effects of EGFR activation, with the aim of blocking tumor growth and invasion. A number of agents targeting EGFR, including specific antibodies directed against its ligand-binding domain and small molecules inhibiting its tyrosine kinase activity are either in clinical trials or are already approved for clinical treatment. This article reviews the EGFR role in carcinogenesis and tumor progression as rational bases for the development of specific therapeutic inhibitors.
-
Int. J. Biochem. Cell Biol. · Oct 2005
ReviewInsulin-like growth factor-1 and muscle wasting in chronic heart failure.
Chronic heart failure is a clinical syndrome of cardiac origin, which affects various organ systems. It is associated with metabolic abnormalities leading to a catabolic syndrome in advanced stages of the disease. As in several other chronic diseases, skeletal muscle dysfunction and structural muscle abnormalities result in progressive muscle wasting and cachexia. ⋯ This suppression occurs in the presence of normal serum levels of insulin-like growth factor-1. In addition to catabolic effects of proinflammatory cytokines, these recent findings are consistent with reduced anabolism involving altered local insulin-like growth factor-1 levels in progressive muscle atrophy in chronic heart failure. This article describes local effects of insulin-like growth factor-1 on skeletal muscle function and morphology, its role in stem cell recruitment and muscle regeneration as well as its regulation in circumstances of muscle inflammation and wasting.