Current pharmaceutical design
-
Rheumatoid Arthritis (RA) is a chronic, inflammatory, autoimmune disease affecting diarthrodial joints and extra-articular tissues; in the absence of an effective treatment, it is characterized by persistent symmetrical and erosive synovitis which leads to structural joint damage and lifelong disability. Several autoantibodies have been associated with RA such as rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPA). B cells have been shown to play a crucial role in the pathogenesis of RA by producing autoantibodies and promoting synovial inflammation through antigen presentation, T cells activation and cytokines production [1]. ⋯ Consequently, to date a "trial-and-error" approach is used in the prescription of biologics in RA, which has the obvious disadvantage of potentially exposing patients to drugs that they may not respond, with potential unnecessary side-effects, delaying use of an effective treatment and causing a significant economic burden to society. Therefore, identifying pre-treatment predictors of response with a customized stratification approach would be of invaluable importance in RA, also in consideration of the large number of biologics in development targeting novel pathways currently being tested in clinical trials. In this manuscript, we review existing data and provide future perspectives with regard to the role of synovial histopathology as a potential prognostic biomarker for patient stratification in RA, in particular regarding the use of specific biologic therapies.
-
Review
Disruption of Circadian Rhythms and Sleep in Critical Illness and its Impact on Innate Immunity.
The earth rotates on its axis around the sun, creating a day and night cycle, that caused the development of circadian rhythms. The circadian rhythm is primarily entrained by light, which is detected by the retina. Retinal ganglion cells project to a part of the hypothalamus termed suprachiasmatic nucleus. ⋯ In critically ill patients the circadian rhythm is substantially altered, supporting a dysfunctional innate immune response. This review discusses recent basic science findings on the interaction of the circadian rhythm and the innate immune system. Furthermore we give an outlook on potential future therapeutic strategies.
-
The acid-sensing ion channel (ASIC) has emerged as a novel type of ion channel that is activated by extracellular protons as well as nonproton ligands. Advances in ASIC research have resolved its multifaceted structural and functional properties, including its widespread distribution, polymodal activation, and activity-dependent regulation of its expression. ⋯ Here we review the contribution of ASICs at the peripheral and central levels to the development of acute pain, inflammatory pain, neuropathic pain, and anxiety-related disorders, as well as their potential underlying mechanisms. Accumulating evidence suggests that ASICs represent a novel class of promising targets for developing effective therapies for pain and anxiety.
-
Recent investigations of the cellular and molecular mechanisms of pain provide new hopes for more effective treatments for patients with chronic pain. At the molecular and genetic levels, new proteins and genes related to sensory sensation have been identified. ⋯ This disconnect between discovery and better treatment options is due, in part to the negative side effects associated with new treatment options, and also as a result of the ineffectiveness of these new drugs for inhibiting chronic pain. In this review, I will explore this disconnect between discovery and treatment, and propose that the failure of previous medicines can be due to their limited effects on injury-related plasticity, and question the common misperception of seeking compounds for high efficacy before understanding basic mechanisms of the target proteins in pain-related plasticity.
-
This article reviews our current understanding of the relationships between critical illness, circadian disruption, and delirium. ⋯ Delirium is a common and morbid complication of hospitalization, particularly in the setting of critical illness and intensive care unit (ICU) admission. Critical illness involves a host of acute metabolic, hormonal and inflammatory responses that appear to disrupt normal sleep architecture and precipitate cerebral dysfunction. The intervention-heavy environment of the ICU further disrupts normal circadian rhythms and increases delirium risk. Despite strong evidence for correlation of sleep disruption, critical illness and delirium, causal relationships remain difficult to prove. Delirium is almost certainly a multifactorial condition. This article reviews proposed pathophysiologic mechanisms and potential therapeutic targets. In the absence of definitive pharmacologic therapy, interventions prioritizing maintenance of normal circadian, sleep, and behavioral patterns have shown promise in delirium risk reduction.