Current pharmaceutical design
-
Fibromyalgia (FM) is continuing to be a challenging and confusing disorder for researchers and clinicians with its diverse symptoms, poorly understood etiology and pathophysiology. The use of multiple outcome variables reflecting the complexity of FM and co-morbid syndromes, makes it difficult to evaluate the efficacy or effectiveness of the treatment in clinical trials. Additionally researchers inevitably rely on patients' self-reported outcome data, which is prone to error and bias. ⋯ Consequently, clinicians and researchers have various highly validated and adequate outcome domains to assess FM symptoms and new researches continue to add new valuable domains. Nevertheless the current problem is to conclude, which treatment works best for whom and which are the outcome domains suitable for FM patients or patients' subgroups with different prominent features. Standardised and appropriate core outcome domains for FM clinical trails will encourage more complete investigations, relevant outcome reporting and well-designed multicenter trials.
-
Tuberculosis (TB) is a growing international health concern, since it is the leading infectious cause of death in the world today. In particular, the increasing prevalence of multidrug-resistant (MDR)-TB has greatly contributed to the increased difficulties in the control of TB. Because of the global health problems of TB, the increasing rate of MDR-TB and the high rate of a co-infection with HIV, the development of potent new anti-TB drugs without cross-resistance with known antimycobacterial agents is urgently needed. ⋯ In addition, the future development of new antitubercular drugs is briefly discussed according to the potential pharmacological targets. New critical information on the whole genome of Mycobacterium tuberculosis (MTB) was recently elucidated and increasing knowledge on various mycobacterial virulence genes will promote the progression in the identification of genes that code for new drug targets. Using such findings on MTB genome, drug development using quantitative structure-activity relationship may be possible in the near future.
-
The mechanisms of action of anesthetics are unclear. Much attention has been focused on ion channels in the central nervous system as targets for anesthetics. During the last decade, major advances have been made in our understanding of the physiology and pharmacology of G-protein-coupled receptor (GPCR) signaling. ⋯ However, an estimated 500-800 additional GPCRs have been classified as "orphan" receptors (oGPCRs) because their endogenous ligands have not yet been identified. Given that known GPCRs are targets for anesthetics, these oGPCRs represent a rich group of receptor targets for anesthetics. This article highlights the effects of anesthetics on Gq-coupled receptors, and discusses whether GPCRs other than Gq-coupled receptors are targets for anesthetics.
-
Levosimendan is a new calcium sensitizer developed for the treatment of congestive heart failure. Experimental studies indicate that levosimendan increases myocardial contractility and dilates both the peripheral and coronary vessels. Its positive inotropic effect is based on calcium-dependent binding of the drug to cardiac troponin C. ⋯ The most common adverse events associated with levosimendan treatment are headache and hypotension, as a likely consequence of the vasodilating properties of the compound. In conclusion, levosimendan offers a new effective option for the treatment of acutely decompensated heart failure. Unlike traditional inotropes, levosimendan seems also to be safe in terms of morbidity and mortality.
-
Spinal cord injuries (SCI) result in a devastating loss of function below the level of the lesion in which there are variable motor recoveries and, in the majority of cases, central neuropathic pain syndromes (CNP) develop several months to years following injury. Unfortunately, the study of chronic pain after SCI has been neglected in the past due in part to the lack of good animal models but largely due to the clinically held dogma that CNP is not a real phenomenon and is psychogenic in nature rather than based on described pathophysiological mechanisms. The purpose of this article is to offer standardized terminology of pain, insight into animal modeling issues of CNP, descriptions of current clinical therapies and to discuss the pathophysiological mechanisms that provide the substrate for CNP that will lead to innovative new therapies. It is hoped that this information will give insight for research strategies as well as better care not only of SCI individuals, but is generalizable to many other CNP syndromes.