Brain research
-
Mortality after serious systemic thermal injury may be linked to significant increases in cerebral vascular permeability and edema due to blood-brain barrier (BBB) breakdown. This BBB disruption is thought to be mediated by a family of proteolytic enzymes known as matrix metalloproteinases (MMPs). The gelatinases, MMP-2 and MMP-9, digest the endothelial basal lamina of the BBB, which is essential for maintaining BBB integrity. ⋯ MMP-9 protein levels and enzyme activity began to increase at 7 h and reached significant levels between 7 and 24 h after thermal injury. While MMP-9 protein levels continued to increase significantly through 72 h, enzyme activity returned to control level. The increase in MMP-9 expression and activity, associated with increased BBB permeability following thermal injury, indicates that MMP-9 may contribute to observed cerebral edema in peripheral thermal injury.
-
In the diseased central nervous system, astrogliosis is accompanied by microglial activation. Depending on the context of their activation, reactive astrocytes are involved in neuronal survival and regeneration in an either protective or impedimental way. Major reactive changes of astrocytes in vivo are the upregulation of the intermediate filaments GFAP (glial fibrillary acidic protein) and vimentin with accompanying cellular hypertrophy and/or hyperplasia. ⋯ Nevertheless, LPS-activated microglia stimulated astrocytes as demonstrated by an increased cell number and an enhanced mRNA expression of IL-6. Resting microglia did not change any of the determined parameters. Our results suggest that the role of activated microglia in astrogliotic processes following injury of the brain has to be reevaluated, as microglia in their activated state might support the onset of astrogliosis on the one hand, but might delay or reduce subsequent glial scar formation on the other hand.
-
The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system (RAS), is known to modulate waking and rapid eye movement (REM) sleep. REM sleep decreases between 10 and 30 days postnatally in the rat, with the majority occurring between 12 and 21 days. We investigated the possibility that changes in the cholinergic, muscarinic and/or nicotinic, input to PPN neurons could explain at least part of the developmental decrease in REM sleep. ⋯ The mixed muscarinic agonist carbachol (CAR) hyperpolarized all type II (A current) PPN cells and depolarized all type I (low threshold spike-LTS current) and type III (A+LTS current) PPN cells, but did not change effects during the period known for the developmental decrease in REM sleep. The effects of CAR persisted in the presence of TTX but were mostly blocked by the muscarinic antagonist atropine (ATR), and the remainder by MEC. We conclude that, while the nicotinic inputs to the PPN may help modulate the developmental decrease in REM sleep, the muscarinic inputs appear to modulate different types of cells differentially.
-
alpha2-Adrenoceptor (AR) agonists increase in analgesic potency and efficacy after peripheral nerve injury, and their effects are blocked by neuronal nitric oxide synthase (nNOS) inhibitors and M4 muscarinic receptor antagonists only after injury. We tested whether nNOS and M4 muscarinic receptors are co-expressed in the spinal cord, and whether destruction of a subset of sensory afferents which are essential to alpha2-AR analgesia would also destroy nNOS and M4 receptor expression. Male Sprague-Dawley rats underwent left L5 and L6 spinal nerve ligation. ⋯ In contrast, nNOS staining in dorsal horn neurons was unaltered by these manipulations. M4 receptors were present on neurons in the dorsal horn, some of which co-expressed nNOS, but their pattern of expression was not altered by these manipulations. Peripheral nerve injury increases nNOS expression in fibers in the superficial dorsal horn, some of which likely express p75(NTR), and alpha2-AR agonists may reduce injury-induced sensitization by activation of nNOS in these fibers In contrast, changes in nNOS and M4 receptor location on spinal cord neurons are not responsible for increased analgesic potency of alpha2-AR agonists after nerve injury.
-
The lingual nerve, a peripheral branch of the trigeminal nerve, can be damaged during the surgical removal of lower third molar teeth. This damage can lead to the development of dysaesthesia, with some patients complaining of burning pain. We investigated the hypothesis that vanilloid receptor 1 (TRPV1), a transducer of noxious heat stimuli, was involved in the development of this burning pain. ⋯ Furthermore, there was no correlation between TRPV1 expression and the VAS scores for pain, tingling or discomfort. However, if data from all patients was pooled, there was a negative correlation between the level of TRPV1 expression and the time after initial injury. These data do not rule out involvement of TRPV1 in the aetiology of burning dysaesthesia following lingual nerve injury but suggest that TRPV1 at the injury site does not play a primary role.