Brain research
-
Traumatic axonal injury (TAI) involves neurofilament compaction (NFC) and impaired axoplasmic transport (IAT) in distinct populations of axons. Previous quantification studies of TAI focused on limited areas of pyramidal tract (Py) but not its entire length. Quantification of TAI in corpus callosum (CC) and its comparison to that in Py is also lacking. ⋯ TAI density in Py was significantly higher than in CC. Based on our parallel biomechanical studies, it is inferred that TAI in CC may be related to compressive strains and that in Py may be related to tensile strains. Overall, IAT appears to be the dominant injury type induced by this model and injury in Py predominates that in CC.
-
Transcranial direct current stimulation (tDCS) is an emerging tool for improving recovery from stroke. However, there has been no trial to determine whether it has a therapeutic benefit in the early stage of cerebral ischemia, and there is no consensus on the optimal time window of stimulation. Here, we described the effects of anodal tDCS in early cerebral ischemia, assessing functional improvements and changes in neuronal plasticity, and identifying the optimal time window for delivering tDCS to maximize functional gains. ⋯ However, brain MRI and (1)H MRS showed no significant differences among the three groups in ischemic volume and metabolic alteration. These results suggest that anodal tDCS has the potential to modulate neural plasticity around the ischemic penumbra and even in the contralesional area without aggravating infarction volume and metabolic alteration. The degree of functional improvement was slightly greater when tDCS was applied 1 week rather than 1 day after ischemic injury.