Brain research
-
Neuropathic pain is one of the major problems of patients with spinal cord injury (SCI), which remains refractory to treatment despite a variety of therapeutic approach. Multimodal neuroimaging could provide complementary information for brain mechanisms underlying neuropathic pain, which could be based on development of more effective treatment strategies. Ten patients suffering from chronic neuropathic pain after SCI and 10 healthy controls underwent FDG-PET, T1-anatomical MRI and diffusion tensor imaging. ⋯ These results indicated that white matter changes imply abnormal pain modulation in patients as well as motor impairment. Our study showed the functional and structural multimodal imaging modality commonly identified the possible abnormalities in the brain regions participating pain modulation in neuropathic pain. Multifaceted imaging studies in neuropathic pain could be useful elucidating precise mechanisms of persistent pain, and providing future directions for treatment.
-
Earlier research has demonstrated that treatment with hyperbaric oxygen (HBO2) can elicit an antinociceptive response in models of acute pain. We have demonstrated that this antinociceptive effect is centrally-mediated and is dependent on opioid receptors. The purpose of the present study was to examine the role of endogenous opioid peptides and opioid receptors specifically in the spinal cord in the acute antinociceptive effect of HBO2 in mice. ⋯ HBO2-induced antinociception was sensitive to antagonism by intrathecal (i.t.) pretreatment with the κ- and μ-selective opioid antagonists norbinaltorphimine and β-funaltrexamine, respectively, but not the δ-selective antagonist naltrindole. The antinociceptive effect of HBO2 was also significantly attenuated by i.t. pretreatment with a rabbit antiserum against rat dynorphin1-13 but not antisera against β-endorphin or methionine-enkephalin. Based on these experimental findings, the acute antinociceptive effect of HBO2 appears to involve neuronal release of dynorphin and activation of κ- and μ-opioid receptors in the spinal cord.
-
This study clarified the neural mechanisms underlying jaw movements in pharyngolaryngeal reflexes such as swallowing in rats. After retrograde tracer injections into the ventromedial division (Vmovm) of the trigeminal motor nucleus (Vmo) containing jaw-opening (JO) motoneurons or into the dorsolateral division (Vmodl) of Vmo containing jaw-closing (JC) motoneurons, JO and JC premotoneurons were labeled with an ipsilateral predominance in the medial and intermediate subnuclei of the rostrocaudal middle two-thirds of the nucleus of the solitary tract (Sol); JC premotoneurons were also in the lateral subnucleus of Sol. After anterograde tracer injections into the Sol, axons were labeled with an ipsilateral predominance in the Vmovm and Vmodl, prominently in the ipsilateral Vmovm. ⋯ Double labeling experiments demonstrated contacts between the afferent terminals and the JO and JC premotoneurons. The present study has for the first time revealed the differential distribution of JO and JC premotoneurons in the Sol and features of their projections from the Sol, as well as their connections with SLN and GpN-ct afferent inputs. The JO and JC premotoneurons in the Sol may play an important role in generation and organization of jaw movements in pharyngolaryngeal reflexes evoked by SLN and GpN-ct inputs, such as swallowing.