Brain : a journal of neurology
-
Besides the common distal symmetrical sensory-motor polyneuropathy (DSP) that is often associated with autonomic dysfunction, diabetic patients may develop multifocal sensory-motor deficits (MDN) secondary to roots, plexus and nerve trunk involvement. Nerve ischaemia has been suggested as a common mechanism for the different patterns of diabetic neuropathies, yet the important clinical differences that exist between DSP and MDN suggest concurrent factors. In order to learn more on the subject, we prospectively studied 22 consecutive diabetic patients with MDN, for which other causes of neuropathy were excluded by appropriate investigations, including biopsy of a recently affected sensory nerve. ⋯ Perivascular mononuclear cell infiltrates were present in the nerve specimens of 21 out of 22 patients, prominently in four patients. In comparison, nerve biopsy specimens of 30 patients with severe distal symmetrical diabetic polyneuropathy showed mild epineurial mononuclear cell infiltrate in one patient and endoneurial seepage of red cells in another. We conclude that MDN is related to pre-capillary blood vessel involvement in elderly diabetic patients with a secondary inflammatory response.
-
Changes in the cerebral metabolism and the excitability of brain areas remote from an ischaemic brain lesion have been reported in animals and humans and implicated as a mechanism relevant to functional recovery. The aim of the present study was to determine whether changes in the inhibitory and excitatory activity in motor cortex of the non-affected hemisphere are present in stroke patients, and whether these changes are related to the extent of the patients' recovery of function. Transcranial magnetic stimulation (TMS) was used to study the first dorsal interosseus muscle (FDI) of the non-affected hand in 13 patients with good recovery of hand function after stroke, and was compared with left hemispheric stimulation in 13 healthy age-matched volunteers. ⋯ The similarity of the inhibitory effect at low CS intensities in the patients with good recovery and healthy subjects, and the steeper increase of conditioned MEP amplitude at higher CS intensities in the recovering patients suggest that in the patients' contralesional motor cortex the balance of excitatory and inhibitory activity was shifted towards an increase of excitatory activity in the neuronal circuits tested at ISIs of 2 and 3 ms. This shares similarities to mechanisms implicated as relevant for reorganizational processes after experimental brain injury and may be relevant for functional recovery after stroke. The absence of changes in cortical excitability in patients with poor recovery supports the relevance of our findings for recovery.
-
Review Multicenter Study
Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): a clinicopathological study of 205 Japanese patients.
Three genes commonly causing Charcot-Marie-Tooth disease (CMT) encode myelin-related proteins: peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ) and connexin 32 (Cx32). Demyelinating versus axonal phenotypes are major issues in CMT associated with mutations of these genes. We electrophysiologically, pathologically and genetically evaluated demyelinating and axonal features of 205 Japanese patients with PMP22 duplication, MPZ mutations or Cx32 mutations. ⋯ Median nerve MCVs were well maintained independently of age, disease duration and the severity of clinical and pathological abnormalities, confirming that median nerve MCV is an excellent marker for the genetically determined neuropathic phenotypes. Amplitude of CMAPs was correlated significantly with distal muscle strength in PMP22 duplication, MPZ mutations and Cx32 mutations, while MCV slowing was not, indicating that clinical weakness results from reduced numbers of functional large axons, not from demyelination. Thus, the three major myelin-related protein mutations induced varied degrees of axonal and demyelinating phenotypic features according to the specific gene mutation as well as the stage of disease advancement, while clinically evident muscle wasting was attributable to loss of functioning large axons.
-
Randomized Controlled Trial Clinical Trial
Migraine can be induced by sildenafil without changes in middle cerebral artery diameter.
Migraine is considered a neurovascular disease involving dilatation of cerebral arteries. Nitric oxide (NO) donors induce dilatation of cerebral and extracranial arteries and migraine, but NO has several mechanisms of action in addition to its cyclic guanosine monophosphate (cGMP)-mediated vasodilatation. We examined whether sildenafil (Viagra), a selective inhibitor of cGMP-hydrolysing phosphodiesterase 5 (PDE5), which acts exclusively by increasing cGMP, can induce migraine and dilatation of cerebral arteries. ⋯ We propose that triggering mechanisms may reside within the perivascular sensory nerve terminals or the brainstem. However, other sites of action may also be possible and future studies are needed to elucidate this. In the clinical use of sildenafil, patients who have migraine should be informed about the risk of migraine attacks.
-
Spinal cord injury (SCI) frequently results in neuropathic pain. However, the pathophysiology underlying this pain is unclear. In this study, we compared clinical examination, quantitative sensory testing (QST) and somatosensory evoked potentials (SEPs) in SCI patients with and without pain below spinal lesion level, with a control group of 20 subjects without injury. ⋯ There was no difference in intensity of pain evoked by repetitive pinprick at lesion level between patient groups. There was a significant correlation between intensity of brush-evoked dysaesthesia at lesion level and spontaneous pain below lesion level of SCI. These data suggest that lesion of the spinothalamic pathway alone cannot account for central pain in SCI patients, and that neuronal hyperexcitability at injury or higher level may be an important mechanism for pain below injury level.