Brain : a journal of neurology
-
Addictive disorders are a major public health concern, associated with high relapse rates, significant disability and substantial mortality. Unfortunately, current interventions are only modestly effective. Preclinical studies as well as human neuroimaging studies have provided strong evidence that the observable behaviours that characterize the addiction phenotype, such as compulsive drug consumption, impaired self-control, and behavioural inflexibility, reflect underlying dysregulation and malfunction in specific neural circuits. ⋯ These interventions appear particularly promising as they may not only allow us to probe affected brain circuits in addictive disorders, but also seem to have unique therapeutic applications to directly target and remodel impaired circuits. However, the available literature is still relatively small and sparse, and the long-term safety and efficacy of these interventions need to be confirmed. Here we review the literature on the use of neuromodulation in addictive disorders to highlight progress limitations with the aim to suggest future directions for this field.
-
See Vandenberghe and Schaeverbeke (doi:10.1093/awx065) for a scientific commentary on this article. A long-term goal of our field is to determine the sequence of pathological events, which ultimately lead to cognitive decline and dementia. In this study, we first assessed the patterns of brain tau tangle accumulation (measured with the positron emission tomography tracer 18F-AV-1451) associated with well-established Alzheimer's disease factors in a cohort including cognitively healthy elderly individuals and individuals at early symptomatic stages of Alzheimer's disease. ⋯ We found that: (i) 18F-AV-1451 positron emission tomography retention was differentially associated with age, and cross-sectional florbetapir positron emission tomography retention, but not with years of education, gender, or APOE genotype; (ii) increased annualized change in florbetapir retention, antecedent to 18F-AV-1451 positron emission tomography scans, in the parieto-temporal and precuneus brain regions was associated with greater 18F-AV-1451 PET retention most prominently in the inferior temporal and inferior parietal regions in the full cohort, with florbetapir positive/negative-associated variability; and (iii) this 18F-AV-1451 positron emission tomography retention pattern significantly explained the variance in cognitive performance and clinical outcome measures, independent of the associated antecedent increased annualized change in florbetapir positron emission tomography retention. These findings are in agreement with the pathology literature, which suggests that tau tangles but not amyloid-β plaques correlate with cognition and clinical symptoms. Furthermore, non-local associations linking increased amyloid-β accumulation rates with increased tau deposition are of great interest and support the idea that the amyloid-β pathology might have remote effects in disease pathology spread potentially via the brain's intrinsic connectivity networks.
-
Perivascular spaces that are visible on magnetic resonance imaging (MRI) are a neuroimaging marker of cerebral small vessel disease. Their location may relate to the type of underlying small vessel pathology: those in the white matter centrum semi-ovale have been associated with cerebral amyloid angiopathy, while those in the basal ganglia have been associated with deep perforating artery arteriolosclerosis. As cerebral amyloid angiopathy is an almost invariable pathological finding in Alzheimer's disease, we hypothesized that MRI-visible perivascular spaces in the centrum semi-ovale would be associated with a clinical diagnosis of Alzheimer's disease, whereas those in the basal ganglia would be associated with subcortical vascular cognitive impairment. ⋯ MRI-visible perivascular space severity in either location did not predict PiB-PET. These findings provide further evidence that the anatomical distribution of MRI-visible perivascular spaces may reflect the underlying cerebral small vessel disease. Using MRI-visible perivascular space location and severity together with other imaging markers may improve the diagnostic value of neuroimaging in memory clinic populations, in particular in differentiating between clinically diagnosed Alzheimer's and subcortical vascular cognitive impairment.
-
Randomized Controlled Trial
Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia.
See Thibault et al. (doi:10.1093/awx033) for a scientific commentary on this article. Neurofeedback training builds upon the simple concept of instrumental conditioning, i.e. behaviour that is rewarded is more likely to reoccur, an effect Thorndike referred to as the 'law of effect'. In the case of neurofeedback, information about specific electroencephalographic activity is fed back to the participant who is rewarded whenever the desired electroencephalography pattern is generated. ⋯ Based on this comprehensive and well-controlled study, we conclude that for the treatment of primary insomnia, neurofeedback does not have a specific efficacy beyond unspecific placebo effects. Importantly, we do not find an advantage of neurofeedback over placebo feedback, therefore it cannot be recommended as an alternative to cognitive behavioural therapy for insomnia, the current (non-pharmacological) standard-of-care treatment. In addition, our study may foster a critical discussion that generally questions the effectiveness of neurofeedback, and emphasizes the importance of demonstrating neurofeedback efficacy in other study samples and disorders using truly placebo and double-blind controlled trials.
-
Randomized Controlled Trial
Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture.
Carpal tunnel syndrome is the most common entrapment neuropathy, affecting the median nerve at the wrist. Acupuncture is a minimally-invasive and conservative therapeutic option, and while rooted in a complex practice ritual, acupuncture overlaps significantly with many conventional peripherally-focused neuromodulatory therapies. However, the neurophysiological mechanisms by which acupuncture impacts accepted subjective/psychological and objective/physiological outcomes are not well understood. ⋯ Compared to healthy adults (n = 34, 28 female, 49.7 ± 9.9 years old), patients with carpal tunnel syndrome demonstrated increased fractional anisotropy in several regions and, for these regions we found that improvement in median nerve latency was associated with reduction of fractional anisotropy near (i) contralesional hand area following verum, but not sham, acupuncture; (ii) ipsilesional hand area following local, but not distal or sham, acupuncture; and (iii) ipsilesional leg area following distal, but not local or sham, acupuncture. As these primary somatosensory cortex subregions are distinctly targeted by local versus distal acupuncture electrostimulation, acupuncture at local versus distal sites may improve median nerve function at the wrist by somatotopically distinct neuroplasticity in the primary somatosensory cortex following therapy. Our study further suggests that improvements in primary somatosensory cortex somatotopy can predict long-term clinical outcomes for carpal tunnel syndrome.