Brain : a journal of neurology
-
Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. ⋯ Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program.
-
Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. ⋯ The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage.
-
Parkinson's disease is associated with early parasympathetic dysfunction leading to constipation and gastroparesis. It has been suggested that pathological α-synuclein aggregations originate in the gut and ascend to the brainstem via the vagus. Our understanding of the pathogenesis and time course of parasympathetic denervation in Parkinson's disease is limited and would benefit from a validated imaging technique to visualize the integrity of parasympathetic function. ⋯ In Parkinson's disease, the dorsal motor nucleus of the vagus undergoes severe degeneration and pathological α-synuclein aggregations are also seen in nerve fibres innervating the gastro-intestinal tract. In contrast, the enteric nervous system displays little or no loss of cholinergic neurons. Decreases in (11)C-donepezil binding may, therefore, represent a marker of parasympathetic denervation of internal organs, but further validation studies are needed.
-
Reduced cerebrospinal fluid amyloid-β42 and increased retention of florbetapir positron emission tomography are biomarkers reflecting cortical amyloid load in Alzheimer's disease. However, these measurements do not always agree and may represent partly different aspects of the underlying Alzheimer's disease pathology. The goal of this study was therefore to test if cerebrospinal fluid and positron emission tomography amyloid-β biomarkers are independently related to other Alzheimer's disease markers, and to examine individuals who are discordantly classified by these two biomarker modalities. ⋯ The finding that cerebrospinal fluid and positron emission tomography amyloid-β provide partially independent information about a wide range of Alzheimer's measures supports the theory that these modalities represent partly different aspects of Alzheimer's pathology. The fact that mismatch, with positive cerebrospinal fluid amyloid-β but normal positron emission tomography amyloid-β, is relatively common in cognitively healthy people may be considered when using these biomarkers to identify early stage Alzheimer's disease. Reduced cerebrospinal fluid amyloid-β may be more strongly related to early stage Alzheimer's disease, whereas increased positron emission tomography amyloid-β may be more strongly related to disease progression.
-
Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. ⋯ The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.