Brain : a journal of neurology
-
Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by (11)C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. ⋯ Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer's disease pathology, encouraging for the use of (11)C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of Alzheimer's disease. These results may begin to shed light on the mechanisms by which amyloid-β deposition leads to neurodegeneration and cognitive decline and the development of a more specific Alzheimer's disease-specific imaging signature for diagnosis and use of this knowledge in the development of new anti-therapies for Alzheimer's disease.
-
Phenobarbital produces its anti-epileptic actions by increasing the inhibitory drive of γ-aminobutyric acid. However, following recurrent seizures, γ-aminobutyric acid excites neurons because of a persistent increase of chloride raising the important issue of whether phenobarbital could aggravate persistent seizures. Here we compared the actions of phenobarbital on initial and established ictal-like events in an in vitro model of mirror focus. ⋯ The accumulation of chloride and the excitatory actions of γ-aminobutyric acid in mirror foci neurons are mediated by the sodium-potassium-chloride cotransporter 1 chloride importer and by downregulation and internalization of the chloride-exporter potassium-chloride cotransporter 2. Finally, concomitant applications of the sodium-potassium-chloride cotransporter 1 antagonist bumetanide and phenobarbital decreased excitatory actions of γ-aminobutyric acid and prevented its paradoxical actions on mirror focus. Therefore, the history of seizures prior to phenobarbital applications determines its effects and rapid treatment of severe potentially epileptogenic-neonatal seizures is recommended to prevent secondary epileptogenesis associated with potassium chloride cotransporter 2 downregulation and acquisition of the excitatory γ-aminobutyric acid phenotype.
-
Fragile X-associated tremor/ataxia syndrome is a neurodegenerative disorder that primarily affects older male premutation carriers of the fragile X mental retardation gene. Although its core symptoms are mainly characterized by motor problems such as intention tremor and gait ataxia, cognitive decline and psychiatric problems are also commonly observed. Past radiological and histological approaches have focused on prominent neurodegenerative changes in specific brain structures including the cerebellum and limbic areas. ⋯ Furthermore, regression analyses revealed a significant negative effect of CGG repeat size on grey matter density in the dorsomedial frontal regions. A significant negative correlation with the clinical scale for the severity of fragile X-associated tremor/ataxia syndrome was found in a part of the vermis. These observations reveal the anatomical patterns of the neurodegenerative process that underlie the motor, cognitive and psychiatric problems of fragile X-associated tremor/ataxia syndrome, together with incipient structural abnormalities that may occur before the clinical onset of this disease.
-
Randomized Controlled Trial
Double-blind clinical trial of thalamic stimulation in patients with Tourette syndrome.
Deep brain stimulation of the thalamus has been proposed as a therapeutic option in patients with Tourette syndrome who are refractory to pharmacological and psychotherapeutic treatment. Patients with intractable Tourette syndrome were invited to take part in a double-blind randomized cross-over trial assessing the efficacy and safety of stimulation of the centromedian nucleus-substantia periventricularis-nucleus ventro-oralis internus crosspoint in the thalamus. After surgery, the patients were randomly assigned to 3 months stimulation followed by 3 months OFF stimulation (Group A) or vice versa (Group B). ⋯ Serious adverse events included one small haemorrhage ventral to the tip of the electrode, one infection of the pulse generator, subjective gaze disturbances and reduction of energy levels in all patients. The present preliminary findings suggest that stimulation of the centromedian nucleus-substantia periventricularis-nucleus ventro-oralis internus crosspoint may reduce tic severity in refractory Tourette syndrome, but there is the risk of adverse effects related to oculomotor function and energy levels. Further randomized controlled trials on other targets are urgently needed since the search for the optimal one is still ongoing.
-
Our aim was to examine how brain imaging in the initial phase of a stroke could predict both acute/subacute as well as chronic spatial neglect. We present the first voxel-wise longitudinal lesion-behaviour mapping study, examining acute/subacute as well as chronic performance in the same individuals. Acute brain imaging (acquired on average 6.2 days post-injury) was used to evaluate neglect symptoms at the initial (mean 12.4 days post-stroke) and the chronic (mean 491 days) phase of the stroke. ⋯ At the subcortical level, the basal ganglia as well as the inferior occipitofrontal fasciculus/extreme capsule appear to play a significant role for both acute/subacute as well as chronic neglect. Beyond, the uncinate fasciculus was critically related to the emergence of chronic spatial neglect. We infer that individuals who experience spatial neglect in the initial phase of the stroke yet do not have injury to these cortical and subcortical structures are likely to recover, and thus have a favourable prognosis.