Brain : a journal of neurology
-
Patients suffering from schizophrenia may report unusual experiences of their own actions. They may either feel that external forces are controlling their actions or even their thoughts, or they may feel in control of events that in fact are not caused by their actions. Most theories link these disturbances in the sense of agency to deficits in motor prediction, resulting in a mismatch between predicted and actual sensory feedback at a central comparator mechanism. ⋯ Our quantitative, implicit measures show how basic sensory and motor experience may be altered in acute psychosis. The enhanced sense of agency in schizophrenia reflects reliance on retrospection, rather than prediction, to associate actions with external events. The failure to predict the effects of one's own actions may underlie the blurring and confusion in the relationship between the self and the world that characterizes acute psychosis.
-
Post-surgical neuropathies are usually attributed to mechanical factors, such as compression, stretch, contusion or transection. The role of inflammatory mechanisms in neuropathies occurring after surgeries is poorly appreciated and not well characterized, and may provide a rationale for immunotherapy. A total of 23 selected patients with post-surgical neuropathies received nerve biopsies, of which 21 demonstrated increased inflammation. Here we report the clinical features in these 21 cases of biopsy-confirmed and 12 cases of clinically suspected post-surgical inflammatory neuropathies, in whom no trauma to the nerves was documented. All neuropathies developed within 30 days of a surgical procedure. Of 33 patients, 20 were male and the median age was 65 years (range 24-83). Surgical procedures were orthopaedic (n=14), abdominal/pelvic (n=12), thoracic (n=5) and dental (n=2). Patients developed focal (n=12), multifocal (n=14) or diffuse (n=7) neuropathies. Focal and multifocal neuropathies typically presented with acute pain and weakness, and focal neuropathies often mimicked mechanical aetiologies. Detailed analyses, including clinical characteristics, electrophysiology, imaging and peripheral nerve pathology, were performed. Electrophysiology showed axonal damage. Magnetic resonance imaging of roots, plexuses and peripheral nerves was performed in 22 patients, and all patients had abnormally increased T(2) nerve signal, with 20 exhibiting mild (n=7), moderate (n=12) or severe (n=1) enlargement. A total of 21 patients had abnormal nerve biopsies that showed increased epineurial perivascular lymphocytic inflammation (nine small, five moderate and seven large), with 15 diagnostic or suggestive of microvasculitis. Evidence of ischaemic nerve injury was seen in 19 biopsies. Seventeen biopsies had increased axonal degeneration suggesting active neuropathy. Seventeen biopsied patients were treated with immunotherapy. In 13 cases with longitudinal follow-up (median 9 months, range 3-71 months), the median neuropathy impairment score improved from 30 to 24 at the time of last evaluation (P=0.001). ⋯ (i) not all post-surgical neuropathies are mechanical, and inflammatory mechanisms can be causative, presenting as pain and weakness in a focal, multifocal or diffuse pattern; (ii) these inflammatory neuropathies may be recognized by their spatio-temporal separation from the site and time of surgery and by the characteristic magnetic resonance imaging features; (iii) occasionally post-surgical inflammatory and mechanical neuropathies are difficult to distinguish and nerve biopsy may be required to demonstrate an inflammatory mechanism, which in our cohort often, but not exclusively, exhibited pathological features of microvasculitis and ischaemia; and (iv) recognizing the role of inflammation in these patients' neuropathy led to rational immunotherapy, which may have resulted in the subsequent improvement of neurological symptoms and impairments.
-
Randomized Controlled Trial Clinical Trial
Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury.
The aim of this study was to evaluate the analgesic effect of transcranial direct current stimulation of the motor cortex and techniques of visual illusion, applied isolated or combined, in patients with neuropathic pain following spinal cord injury. In a sham controlled, double-blind, parallel group design, 39 patients were randomized into four groups receiving transcranial direct current stimulation with walking visual illusion or with control illusion and sham stimulation with visual illusion or with control illusion. For transcranial direct current stimulation, the anode was placed over the primary motor cortex. ⋯ Patients receiving transcranial direct current stimulation and visual illusion experienced a significant improvement in all pain subtypes, while patients in the transcranial direct current stimulation group showed improvement in continuous and paroxysmal pain, and those in the visual illusion group improved only in continuous pain and dysaesthesias. At 12 weeks after treatment, the combined treatment group still presented significant improvement on the overall pain intensity perception, whereas no improvements were reported in the other three groups. Our results demonstrate that transcranial direct current stimulation and visual illusion can be effective in the management of neuropathic pain following spinal cord injury, with minimal side effects and with good tolerability.
-
Randomized Controlled Trial Clinical Trial
Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson's disease.
Whereas numerous studies document the effects of dopamine medication and deep brain stimulation on motor function in patients with Parkinson's disease, few have investigated deep brain stimulation-induced changes in sensory functions. In this study of 13 patients with Parkinson's disease, we tested the effects of deep brain stimulation on the somatosensory temporal discrimination threshold. To investigate whether deep brain stimulation and dopaminergic medication induce similar changes in somatosensory discrimination, somatosensory temporal discrimination threshold values were acquired under four experimental conditions: (i) medication ON/deep brain stimulation on; (ii) medication ON/deep brain stimulation off; (iii) medication OFF/deep brain stimulation on; and (iv) medication OFF/deep brain stimulation off. ⋯ Somatosensory temporal discrimination threshold values differed significantly between deep brain stimulation on and deep brain stimulation off conditions only when the patients were studied in the medication ON condition and were higher in the deep brain stimulation on/medication ON than in the deep brain stimulation off/medication ON condition. Dopamine but not subthalamic nucleus deep brain stimulation restores the altered somatosensory temporal discrimination in patients with Parkinson's disease. Deep brain stimulation degrades somatosensory temporal discrimination by modifying central somatosensory processing whereas dopamine restores the interplay between cortical and subcortical structures.
-
Motor and cognitive outcome in patients with Parkinson's disease 8 years after subthalamic implants.
Deep brain stimulation of the subthalamic nucleus represents the most important innovation for treatment of advanced Parkinson's disease. Prospective studies have shown that although the beneficial effects of this procedure are maintained at 5 years, axial motor features and cognitive decline may occur in the long term after the implants. In order to address some unsolved questions raised by previous studies, we evaluated a series of 20 consecutive patients who received continuous stimulation for 8 years. ⋯ At 8 years, there was no significant increase of side-effects when compared with 5-year follow-up. In conclusion, deep brain stimulation of the subthalamic nucleus is a safe procedure with regard to cognitive and behavioural morbidity over long-term follow-up. However, the global benefit partly decreases later in the course of the disease, due to progression of Parkinson's disease and the appearance of medication- and stimulation-resistant symptoms.