British journal of anaesthesia
-
Robotic surgery pushes the frontiers of innovation in healthcare technology towards improved clinical outcomes. We discuss the evolution to five generations of robotic surgical platforms including stereotactic, endoscopic, bioinspired, microbots on the millimetre scale, and the future development of autonomous systems. ⋯ The innovative impact of this technology holds the potential to achieve transformative clinical improvements. However, despite over 30 yr of incremental advances it remains formative in its innovative disruption.
-
The use of anticholinesterases to reverse residual neuromuscular block at the end of surgery became routine practice in the 1950s. These drugs could only be used when recovery from block was established [two twitches of the train-of-four (TOF) count detectable] and concern was expressed about their cholinergic side-effects. By the 1990s, it was recognized that failure to reverse residual block adequately to a TOF ratio (TOFR) >0.7 was associated with increased risk of postoperative pulmonary complications (POPCs) following the long-acting non-depolarizing neuromuscular blocking drug (NDNMBD) pancuronium. ⋯ Although sugammadex has been shown to rapidly reverse profound neuromuscular block from aminosteroidal agents, there is currently no evidence that sugammadex is superior to neostigmine in its effect on POPCs. Other new antagonists, including cysteine to degrade CW002 and calabadion 1 and 2 to antagonize aminosteroidal and benzylisoquinolium NDNMBDs, are being studied in preclinical and clinical trials. Quantitative neuromuscular monitoring is essential whenever a NDNMBD is used to ensure full recovery from neuromuscular block.
-
The approach to i.v. fluid therapy for hypovolaemia may significantly influence outcomes for patients who experience a systemic inflammatory response after sepsis, trauma, or major surgery. Currently, there is no single i.v. fluid agent that meets all the criteria for the ideal treatment for hypovolaemia. The physician must choose the best available agent(s) for each patient, and then decide when and how much to administer. ⋯ Perhaps most importantly, it remains unclear how to select the optimal dose of fluid in different patients and different clinical scenarios. There is good reason to believe that both inadequate and excessive i.v. fluid administration may lead to poor outcomes, including increased risk of infection and organ dysfunction, for hypovolaemic patients. In this review, we summarize the current knowledge on this topic and identify some key pitfalls and some areas of agreed best practice.
-
Cerebral autoregulation (CA) is the mechanism that maintains constancy of cerebral blood flow (CBF) despite variations in blood pressure (BP). Patients with attenuated CA have been shown to have an increased incidence of peri-operative stroke. Studies of CA in anaesthetized subjects are rare, because a simple and non-invasive method to quantify the integrity of CA is not available. In this study, we set out to improve non-invasive quantification of CA during surgery. For this purpose, we introduce a novel method to amplify spontaneous BP fluctuations during surgery by imposing mechanical positive pressure ventilation at three different frequencies and quantify CA from the resulting BP oscillations. ⋯ NCT03071432.