Journal of the Optical Society of America. A, Optics, image science, and vision
-
Determining the correspondence in coded structured light is challenging, but it is very important in one-shot techniques for 3D shape reconstruction. The problem of decoding stripe patterns can be modeled as matching two code sequences. We propose decoding edges indirectly based on the property of the stripe pattern, which can be represented as edge code, color code, or mixed code sequences. ⋯ Here we obtain six benchmark datasets using the robust space-time analysis. Five decoding methods are quantitatively evaluated using the ground truth. The comparison results show that our method is robust for complex code situations and that it outperforms the state-of-the-art technique in this area.
-
J Opt Soc Am A Opt Image Sci Vis · Nov 2010
System design considerations to improve isoplanatism for adaptive optics retinal imaging.
Adaptive optics (AO) retinal images are limited by anisoplanatism; wavefront shape varies across the field of view such that only a limited area can achieve diffraction-limited image quality at one time. We explored three alternative AO modalities designed to reduce this effect, drawn from work in astronomy. Optical design analysis and computer modeling was undertaken to predict the benefit of each modality for various schematic eyes and various complexities of the imaging system. ⋯ Mirror-based relay optics also demonstrated good off-axis performance, but their advantage was lost in regions of the system suffering from uncorrected higher-order aberration. Incorporating "off-the-plane" beam deviations ameliorated this loss substantially. In this work we also show, to our knowledge for the first time, that the ideal location of a single AO corrector need not lie in the pupil plane.
-
J Opt Soc Am A Opt Image Sci Vis · May 2010
Attenuation characterization of multiple combinations of imperfect polarizers.
Malus's law, when used to calculate the attenuation ratio of the combination of two imperfect polarizers (two-CIP), will introduce an error, especially near the crossed-axis orientation. In this paper, first, the Jones matrix of the imperfect polarizer is deduced and an exact algorithm of the attenuation ratio of the two-CIP is proposed as well as its monotonic attenuation interval. ⋯ In this three-CIP model, it is found that when the electric field amplitude ratio of the imperfect polarizer is epsilon, the attenuation ratio can change from 1 to epsilon(4) monotonically in a general model when P(1) and P(3) are rotated and P(2) is fixed, which is proved by experiment. Finally, it is deduced that the combination of n imperfect polarizers (n-CIP) can obtain a minimum attenuation ratio of epsilon(2(n-1)), which indicates the number of imperfect polarizers needed to achieve the required attenuation ratio.
-
J Opt Soc Am A Opt Image Sci Vis · Jun 2007
Influence of the mask magnification on imaging in hyper-NA lithography.
Argon fluoride laser (ArF) lithography using immersion technology has the potential to extend the application of optical lithography to 45 nm half-pitch and possibly beyond. By keeping the same 4x magnification factor, the dimensions of the structures on masks are becoming comparable to the exposure wavelength or even smaller. The polarization effect induced by mask features is, however, an issue. ⋯ The near-field intensity and phase distributions from the mask are calculated. The imaging performance of 4x and 8x masks for the sub-45 nm node are explored. A rigorous coupled-wave analysis is developed and employed to analyze the optical diffraction from the 3D topographic periodic features.
-
J Opt Soc Am A Opt Image Sci Vis · Nov 2006
Role of beat noise in limiting the sensitivity of optical coherence tomography.
The sensitivity and dynamic range of optical coherence tomography (OCT) are calculated for instruments utilizing two common interferometer configurations and detection schemes. Previous researchers recognized that the performance of dual-balanced OCT instruments is severely limited by beat noise, which is generated by incoherent light backscattered from the sample. However, beat noise has been ignored in previous calculations of Michelson OCT performance. ⋯ Including this noise, we calculate the dynamic range as a function of OCT light source power, and find that instruments employing balanced interferometers and balanced detectors can achieve a sensitivity up to six times greater than those based on a simple Michelson interferometer, thereby boosting image acquisition speed by the same factor for equal image quality. However, this advantage of balanced systems is degraded for source powers greater than a few milliwatts. We trace the concept of beat noise back to an earlier paper.