European journal of pain : EJP
-
Spinal cord injury (SCI) causes continuous neurological deficits and major sensory-motor impairments. There is no effective treatment to enhance sensory-motor function following SCI. Thus, it is crucial to develop novel therapeutics for this particular patient population. Astaxanthin (AST) is a strong antioxidant, anti-inflammatory and anti-apoptotic agent. In the present study, it was tested in a severe compression SCI model with emphasis on sensory-motor outcomes, signalling pathway, along with other complications. ⋯ Spinal cord injury (SCI) impairs sensory-motor function and causes complications, which astaxanthin (AST) has the potential to be used as a treatment for. The present study investigates the effects of AST in a compression model of SCI with emphasis on sensory-motor outcomes alongside other complications, histopathological damage and also related signalling pathways.
-
Nociceptive pain remains a prevalent clinical problem and often poorly responsive to the currently available analgesics. Previous studies have shown that astroglial glutamate transporter-1 (GLT-1) in the hippocampus and anterior cingulate cortex (ACC) is critically involved in pain processing and modulation. However, the role of astroglial GLT-1 in nociceptive pain involving the hippocampus and ACC remains unknown. We investigated the role of 3-[[(2-Methylphenyl) methyl]thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, in nociceptive pain model and hippocampal-dependent behavioural tasks in mice. ⋯ The present study provides new insights and evaluates the role of GLT-1 activator in the modulation of nociceptive pain involving hippocampus and ACC. Here, we provide evidence that GLT-1 activator could be a potential therapeutic utility for the treatment of nociceptive pain.