Critical care : the official journal of the Critical Care Forum
-
Practice guidelines on weaning should be based on the results of several well-designed randomized studies performed over the last decade. One of those studies demonstrated that immediate extubation after successful trials of spontaneous breathing expedites weaning and reduces the duration of mechanical ventilation as compared with a more gradual discontinuation of ventilatory support. ⋯ In patients with unsuccessful weaning trials, a gradual withdrawal for mechanical ventilation can be attempted while factors responsible for the ventilatory dependence are corrected. Two randomized studies found that, in difficult-to-wean patients, synchronized intermittent mandatory ventilation (SIMV) is the most ineffective [corrected] method of weaning.
-
Relationships between volume and pressure measurements and stroke volume in critically ill patients.
To evaluate the relationships between the changes in stroke volume index (SVI), measured in both the aorta and the pulmonary artery, and the changes in intrathoracic blood volume index (ITBVI), as well as the relationship between changes in aortic SVI and changes in the pulmonary artery wedge pressure (PAWP). ⋯ ITBVI seems to be a better predictor of SVI than PAWP. ITBVI may be more suitable than PAWP for assessing cardiac filling in clinical practice.
-
Ventilator-induced lung injury is a major outcome determinant of the acute respiratory distress syndrome (ARDS). Ventilatory strategies that limit ventilator-induced lung injury should improve outcome from ARDS. The ARDSnet trial showed improved survival in subjects ventilated with a lower tidal volume. ⋯ Finally, ventilator-induced lung injury occurs more commonly from repetitive collapse and re-expansion of injured lung units rather than from the overdistention of persistently aerated lung units. This was not addressed in the trial design. Thus, further study using targeted open-lung strategies are also needed.
-
Continuous renal replacement therapy (CRRT) was first described in 1977 for the treatment of diuretic-unresponsive fluid overload in the intensive care unit (ICU). Since that time this treatment has undergone a remarkable technical and conceptual evolution. It is now available in most tertiary ICUs around the world and has almost completely replaced intermittent haemodialysis (IHD) in some countries. ⋯ The use of CRRT has also spurred renewed interest in the broader concept of blood purification, particularly in septic states. Experimental evidence suggests that this is a promising approach to the management of septic shock in critically ill patients. The evolution and use of CRRT is likely to continue and grow over the next decade.