Critical care : the official journal of the Critical Care Forum
-
In the early phase of their disease process, patients with acute lung injury are often ventilated with strategies that control the tidal volume or airway pressure, while modes employing spontaneous breathing are applied later to wean the patient from the ventilator. Spontaneous breathing modes may integrate intrinsic feedback mechanisms that should help prevent ventilator-induced lung injury, and should improve synchrony between the ventilator and the patient's demand. Airway pressure release ventilation with spontaneous breathing was shown to decrease cyclic collapse/recruitment of dependent, juxtadiaphragmatic lung areas compared with airway pressure release ventilation without spontaneous breathing. Combined with previous data demonstrating improved cardiorespiratory variables, airway pressure release ventilation with spontaneous breathing may turn out to be a less injurious ventilatory strategy.
-
The study sought to assess the feasibility and accuracy of measuring mixed venous oxygen saturation (SvO2) through the left main bronchus (SpO2(trachea)) ⋯ Measurement of the left main bronchus SpO2 is feasible and provides similar readings to SvO2(blood) in hemodynamically stable or in low saturation states. Tracheal oximetry readings are not primarily derived from the tracheal mucosa. The technique merits further evaluation.
-
The ventilator and the endotracheal tube impose additional workload in mechanically ventilated patients breathing spontaneously. The total work of breathing (WOB) includes elastic and resistive work. In a bench test we assessed the imposed WOB using 3100 A/3100 B SensorMedics high-frequency oscillatory ventilators. ⋯ Spontaneous breathing during HFOV resulted in considerable imposed WOB in pediatric and adult simulations, explaining the discomfort seen in those patients breathing spontaneously during HFOV. The level of imposed WOB was lower in the newborn and infant simulations, explaining why these patients tolerate spontaneous breathing during HFOV well. A high fresh gas flow rate reduced the imposed WOB. These findings suggest the need for a demand flow system based on patient need allowing spontaneous breathing during HFOV.