Critical care : the official journal of the Critical Care Forum
-
The potent endogenous antimicrobial peptide human beta-defensin 2 (hBD2) is a crucial mediator of innate immunity. In addition to direct antimicrobial properties, different effects on immune cells have been described. In contrast to the well-documented epithelial beta-defensin actions in local infections, little is known about the leukocyte-released hBD2 in systemic infectious disorders. This study investigated the basic expression levels and the ex vivo inducibility of hBD2 mRNA in peripheral whole blood cells from patients with severe sepsis in comparison to non-septic critically ill patients and healthy individuals. ⋯ In contrast to healthy individuals and critically ill non-septic patients, ex vivo inducibility of hBD2 in peripheral blood cells from septic patients is reduced. Impaired hBD2 inducibility may contribute to the complex immunological dysfunction in patients with severe sepsis.
-
Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. ⋯ We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.
-
Microvascular alterations may play an important role in the development of organ failure in critically ill patients and especially in sepsis. Recent advances in technology have allowed visualization of the microcirculation, but several scoring systems have been used so it is sometimes difficult to compare studies. This paper reports the results of a round table conference that was organized in Amsterdam in November 2006 in order to achieve consensus on image acquisition and analysis. ⋯ We proposed that scoring of the microcirculation should include an index of vascular density, assessment of capillary perfusion and a heterogeneity index.
-
A single centre has reported that implementation of an intensive insulin protocol, aiming for tight glycaemic control (blood glucose 4.4 to 6.1 mmol/l), resulted in significant reduction in mortality in longer stay medical and surgical critically ill patients. Our aim was to determine the degree to which tight glycaemic control can be maintained using an intensive insulin therapy protocol with computerized decision support and to identify factors that may be associated with the degree of control. ⋯ Use of the computerized decision supported intensive insulin therapy protocol did result in achievement of tight glycaemic control for a substantial percentage of each patient's stay, although it did deliver 'normoglycaemia' (4.4 to about 8 mmol/l) for nearly 75% of the time. Tight glycaemic control was difficult to achieve in critically ill patients using this protocol. More sophisticated methods such as continuous blood glucose monitoring with automated insulin and glucose infusion adjustment may be a more effective way to achieve tight glycaemic control. Glycaemia in patients with high BMI and APACHE II scores may be more difficult to control using intensive insulin therapy protocols. Trial registration number 05/Q0505/1.
-
Current prognostic models for intensive care unit (ICU) patients have not been specifically developed or validated in the very elderly. The aim of this study was to develop a prognostic model for ICU patients 80 years old or older to predict in-hospital mortality by means of data obtained within 24 hours after ICU admission. Aside from having good overall performance, the model was designed to reliably and specifically identify subgroups at very high risk of dying. ⋯ Prognostic models with good overall performance may also reliably identify subgroups of very elderly ICU patients who have a very high risk of dying before hospital discharge. The classification tree has the advantage of identifying the separate factors contributing to bad outcome and of using few variables. Up to 9.5% of patients were found to have a risk to die of more than 85%.