Critical care : the official journal of the Critical Care Forum
-
Sepsis is a serious condition with a significant morbidity and mortality. New insight into the immunopathogenesis of sepsis could promote the development of new strategies for diagnosis and therapy. High mobility group box-1 protein (HMGB1) has been known for many years as a nuclear chromosomal protein. Its role as a pro-inflammatory cytokine in sepsis and rheumatoid arthritis has been described recently. The aim of our study was to evaluate HMGB1 as a molecular marker in patients with community-acquired infections. ⋯ In a cohort of patients with suspected community-acquired infections and sepsis, HMGB1 levels were statistically significantly higher in patients compared to the healthy controls. There was no statistically significant difference between the infected and the non-infected patients. Levels of HMGB1 correlated only very weakly to other pro-inflammatory markers and did not correlate to the anti-inflammatory marker sCD163.
-
The overall prognosis of critically ill patients with cancer has improved during the past decade. The aim of this study was to identify early prognostic factors of intensive care unit (ICU) mortality in patients with cancer. ⋯ We observed that critically ill cancer patients with septic shock have an approximately 50% chance of survival to ICU discharge. NT-proBNP was independently associated with ICU mortality within the first 24 hours. NT-proBNP could be a useful tool for detecting high-risk cancer patients within the first 24 hours after septic shock diagnosis.
-
Protective ventilatory strategies have been applied to prevent ventilator-induced lung injury in patients with acute lung injury (ALI). However, adjustment of positive end-expiratory pressure (PEEP) to avoid alveolar de-recruitment and hyperinflation remains difficult. An alternative is to set the PEEP based on minimizing respiratory system elastance (Ers) by titrating PEEP. In the present study we evaluate the distribution of lung aeration (assessed using computed tomography scanning) and the behaviour of Ers in a porcine model of ALI, during a descending PEEP titration manoeuvre with a protective low tidal volume. ⋯ The PEEP at which minimal Ers occurred, obtained by descending PEEP titration with a protective low tidal volume, corresponded to the greatest amount of normally aerated areas, with lesser collapsed and hyperinflated areas. The institution of high levels of PEEP reduced poorly aerated areas but enlarged hyperinflated ones. Reduction in PEEP consistently enhanced poorly or non-aerated areas as well as tidal re-aeration. Hence, monitoring respiratory mechanics during a PEEP titration procedure may be a useful adjunct to optimize lung aeration.
-
Recombinant human activated protein C (rhAPC) has been reported to be cost-effective in severely ill septic patients in studies using data from a pivotal randomized trial. We evaluated the cost-effectiveness of rhAPC in patients with severe sepsis and multiple organ failure in real-life intensive care practice. ⋯ This study, conducted in matched patient populations, demonstrated that in real-life clinical practice the probability that rhAPC will be cost-effective if one is willing to pay 50,000 euros per life-year gained is 74.5%.
-
Comparative Study
Erythropoietin improves skeletal muscle microcirculation and tissue bioenergetics in a mouse sepsis model.
The relationship between oxygen delivery and consumption in sepsis is impaired, suggesting a microcirculatory perfusion defect. Recombinant human erythropoietin (rHuEPO) regulates erythropoiesis and also exerts complex actions promoting the maintenance of homeostasis of the organism under stress. The objective of this study was to test the hypothesis that rHuEPO could improve skeletal muscle capillary perfusion and tissue oxygenation in sepsis. ⋯ rHuEPO produced an immediate increase in capillary perfusion and decrease in NADH fluorescence in skeletal muscle. Thus, it appears that rHuEPO improves tissue bioenergetics, which is sustained for at least six hours in this murine sepsis model.