Critical care : the official journal of the Critical Care Forum
-
Review
Bench-to-bedside review: brain-lung interaction in the critically ill--a pending issue revisited.
Brain and/or lung injury is the most frequent cause of admission to critical care units and patients in this setting frequently develop multiple organ dysfunction with high rates of morbidity and mortality. Mechanical ventilation is commonly used in the management of these critically ill patients and the consequent inflammatory response, together with other physiological factors, is also thought to be involved in distal organ dysfunction. This peripheral imbalance is based on a multiple-pathway cross-talk between the lungs and other organs, including the brain. ⋯ Such neurological dysfunction might be a secondary marker of injury and the neuroanatomical substrate for downstream impairment of other organs. Brain-lung interactions have received little attention in the literature, but recent evidence suggests that both the lungs and brain are promoters of inflammation through common mediators. This review addresses the current status of evidence regarding brain-lung interactions, their pathways and current interventions in critically ill patients receiving mechanical ventilation.
-
In patients with acute respiratory distress syndrome, positive end-expiratory pressure is associated with alveolar recruitment and lung hyperinflation despite the administration of a low tidal volume. The best positive end-expiratory pressure should correspond to the best compromise between recruitment and distension, a condition that coincides with the best respiratory elastance.
-
Acute kidney injury (AKI) is a frequent complication of cardiopulmonary bypass (CPB). The lack of early biomarkers has impaired our ability to intervene in a timely manner. We previously showed in a small cohort of patients that plasma neutrophil gelatinase-associated lipocalin (NGAL), measured using a research enzyme-linked immunosorbent assay, is an early predictive biomarker of AKI after CPB. In this study we tested whether a point-of-care NGAL device can predict AKI after CPB in a larger cohort. ⋯ Accurate measurements of plasma NGAL are obtained using the point-of-care Triage(R) NGAL device. Plasma NGAL is an early predictive biomarker of AKI, morbidity, and mortality after pediatric CPB.
-
Multicenter Study
Simplified electrophysiological evaluation of peripheral nerves in critically ill patients: the Italian multi-centre CRIMYNE study.
Critical illness myopathy and/or neuropathy (CRIMYNE) is frequent in intensive care unit (ICU) patients. Although complete electrophysiological tests of peripheral nerves and muscles are essential to diagnose it, they are time-consuming, precluding extensive use in daily ICU practice. We evaluated whether a simplified electrophysiological investigation of only two nerves could be used as an alternative to complete electrophysiological tests. ⋯ A peroneal CMAP reduction below two standard deviations of normal value accurately identifies patients with CRIMYNE. These should have full neurological and neurophysiological evaluations before discharge from the acute hospital.
-
In 2006, Critical Care provided important and clinically relevant research data in the field of multiple organ failure, sepsis, and shock. This review summarizes the results of the experimental studies and clinical trials and discusses them in the context of the relevant scientific and clinical background.