Critical care : the official journal of the Critical Care Forum
-
Hypothermia improves survival and neurological recovery after cardiac arrest. Pro-inflammatory cytokines have been implicated in focal cerebral ischemia/reperfusion injury. It is unknown whether cardiac arrest also triggers the release of cerebral inflammatory molecules, and whether therapeutic hypothermia alters this inflammatory response. This study sought to examine whether hypothermia or the combination of hypothermia with anesthetic post-conditioning with sevoflurane affect cerebral inflammatory response after cardiopulmonary resuscitation. ⋯ Mild therapeutic hypothermia resulted in decreased expression of typical cerebral inflammatory mediators after cardiopulmonary resuscitation. This may confer, at least in part, neuroprotection following global cerebral ischemia and resuscitation.
-
Diabetes is associated with severe complications and decreased life expectancy. However, in the previous issue of Critical Care, Vincent and colleagues report no difference in mortality between patients with insulin-treated diabetes and patients without diabetes in the intensive care unit (ICU), despite larger severity of illness in the diabetes group at admission. ⋯ On the other hand, patients with diabetes seem not to benefit from tight glycemic control during their ICU stay. Different treatment approaches may be needed for patients with diabetes and patients with stress hyperglycemia.
-
In a recent issue of Critical Care, den Hartog and colleagues show an association between spontaneous hypothermia, defined by an admission body temperature < 35°C, and poor outcome in patients with coma after cardiac arrest (CA) treated with therapeutic hypothermia (TH). Given that TH alters neurological prognostication, studies aiming to identify early markers of injury severity and outcome are welcome, since they may contribute overall to optimize the management of comatose CA patients. This study provides an important message to clinicians involved in post-resuscitation care and raises important questions that need to be taken into account in future studies.
-
Prevention of iatrogenic injury due to ventilation of a heterogeneous lung requires knowledge of dynamic regional events occurring within the tidal cycle. Quantitative bedside imaging techniques that are sensitive to regional mechanics and tidal events hold potential for information delivery that cannot be realized by pressure-volume monitoring alone.
-
Sepsis and shock result in disturbances in microcirculatory perfusion and tissue oxygen utilisation that may not be reflected in global measures of haemodynamics. Near-infrared spectroscopy enables measurement of tissue oxygen saturation (StO2) and provides information on local microvascular and mitochondrial function. This measure could be incorporated with existing targets of goal-directed therapy to provide an integrated approach to haemodynamic resuscitation of both the macro- and microcirculation in various shock states. However, key methodological factors must be addressed before widespread clinical application.