Critical care : the official journal of the Critical Care Forum
-
Survivors of critical illness often have significant long-term brain dysfunction, and routine clinical procedures like mechanical ventilation (MV) may affect long-term brain outcome. We aimed to investigate the effect of the increase of tidal volume (Vt) on brain activation in a rat model. ⋯ MV promoted brain activation. The intensity of the response was higher in HVt animals, suggesting an iatrogenic effect of MV on the brain. These findings suggest that this novel cross-talking mechanism between the lung and the brain should be explored in patients undergoing MV.
-
Metformin is a safe drug when correctly used in properly selected patients. In real life, however, associated lactic acidosis has been repeatedly, although rarely, reported. ⋯ Treatment consists of vital function support and drug removal, mainly achieved by renal replacement therapy. Despite dramatic clinical presentation, the prognosis of metformin-induced lactic acidosis is usually surprisingly good.
-
Comment
In vivo and in vitro evidence for pleiotropic effects of levosimendan in the intensive care setting.
Levosimendan, in addition to its inotropic properties, could have anti-inflammatory and anti-oxidative properties, and can potentially decrease the deleterious effects of reactive oxygen species on the tissues. In their study, Hasslacher and colleagues provided not only in vitro but also in vivo evidence that levosimendan could preserve organ function in acute heart failure and septic-shock-induced myocardial depression via cooling down the oxidative burst of circulating cells.
-
Because patient-ventilator asynchrony (PVA) is recognized as a major clinical problem for patients undergoing ventilatory assistance, automatic methods of PVA detection have been proposed in recent years. A novel approach is airflow spectral analysis, which, when related to visual inspection of airway pressure and flow waveforms, has been shown to reach a sensitivity and specificity of greater than 80% in detecting an asynchrony index of greater than 10%. The availability of automatic non-invasive methods of PVA detection at the bedside would likely be of benefit in intensive care unit practice, but they may be limited by shortcomings, so clear proof of their effectiveness is needed.
-
Ventilator-induced lung injury (VILI), one of the most serious complications of mechanical ventilation (MV), can impact patients' clinical prognoses. Compared to control ventilation, preserving spontaneous breathing can improve many physiological features in ventilated patients, such as gas distribution, cardiac performance, and ventilation-perfusion matching. However, the effect of spontaneous breathing on VILI is unknown. The goal of this study was to compare the effects of spontaneous breathing and control ventilation on lung injury in mechanically-ventilated healthy rabbits. ⋯ Preserving spontaneous breathing can not only improve ventilatory function, but can also attenuate selected markers of VILI in the mechanically-ventilated healthy lung.