Critical care : the official journal of the Critical Care Forum
-
Dynamic changes in lactate concentrations in the critically ill may predict patient outcome more accurately than static indices. We aimed to compare the predictive value of dynamic indices of lactatemia in the first 24 hours of intensive care unit (ICU) admission with the value of more commonly used static indices. ⋯ In the first 24 hours following ICU admission, dynamic indices of hyperlactatemia have significant independent predictive value, improve the performance of illness severity score-based outcome predictions and are superior to simple static indices of lactate concentration.
-
Recent models capturing the pathophysiology of sepsis and ex-vivo data from patients are speculating about immunosuppression in the so-called late phase of sepsis. Clinical data regarding survival and microbiological burden are missing. The aim of this study was to determine the clinical significance of the 'late phase' of sepsis with respect to overall survival and occurrence of microbiological findings. ⋯ The later phase of sepsis is associated with a significant re-increase of positive blood culture results, especially regarding opportunistic bacteria and fungi. These observations warrant further studies focusing on the underlying mechanisms resulting in this outcome burden in the later phase of sepsis.
-
Among the various methods for improving oxygenation while decreasing the risk of ventilation-induced lung injury in patients with acute respiratory distress syndrome (ARDS), a ventilation strategy combining prone position (PP) and recruitment manoeuvres (RMs) can be practiced. We studied the effects on oxygenation of both RM and PP applied in early ARDS patients. ⋯ In our study, interventions such as a 45 cmH2O extended sigh during PP resulted in marked oxygenation improvement. Combined RM and PP led to the highest increase in PaO2/FiO2 ratio without major clinical side effects.
-
Interleukin 17A (IL17A) plays a key role in host defense against microbial infection including Gram-positive bacteria. Genetic factors contribute to the host defense, but the role of IL17A single nucleotide polymorphisms (SNPs) has not yet been investigated in severe sepsis. Therefore, we hypothesized that SNPs in the IL17A gene alter susceptibility to infection and clinical outcome of severe sepsis. ⋯ IL17A genetic variation is associated with altered susceptibility to Gram-positive infection and 28-day mortality of severe sepsis.