Critical care : the official journal of the Critical Care Forum
-
Editorial Comment
Defining the adequate arterial pressure target during septic shock: not a 'micro' issue but the microcirculation can help.
The Surviving Sepsis Campaign guidelines suggest targeting a mean arterial pressure of at least 65 mm Hg to maintain organ perfusion pressure during septic shock. However, the optimal mean arterial pressure can be higher in patients with a history of hypertension or other vascular comorbidities or in those with increased abdominal pressure. ⋯ Near-infrared spectroscopy and sidestream dark field imaging have emerged as promising technologies for monitoring the microcirculation at the bedside. These new methods could provide additional clues to help define the adequate blood pressure to target during the resuscitation phase of septic shock.
-
Case Reports
Licorice consumption as a cause of posterior reversible encephalopathy syndrome: a case report.
A 49-year-old woman was admitted to our hospital because of thunderclap headache and blurred vision. At the time of presentation, her blood pressure was 219/100 mmHg, her arterial pH was 7.64 and her potassium level was 2.7 mM/l. ⋯ To the best of our knowledge, this is the first case report describing licorice consumption as a cause of PRES. Glycyrrhizic acid, a component of licorice, inhibits 11β-hydroxysteroid dehydrogenase and subsequently causes mineralocorticoid excess. Mineralocorticoid excess in turn causes high blood pressure and ultimately gives rise to malignant hypertension. Physicians should remember that licorice use is a very easy-to-treat cause of hypertension, hypertensive encephalopathy and PRES.
-
Mechanical ventilation (MV) could prime the lung toward an inflammatory response if exposed to another insult such as bacterial invasion. The underlying mechanisms are not so far clear. Toll-like receptors (TLRs) allow the host to recognize selectively bacterial pathogens and in turn to trigger an immune response. We therefore hypothesized that MV modulates TLR2 expression and in turn modifies responsiveness to agonists such as bacterial lipopeptide (BLP). ⋯ Mild-stretch MV increases lung expression of TLR2 and sensitizes the lung to bacterial TLR2 ligands. This may account for the propensity of mechanically ventilated patients to develop acute lung injury in the context of airway bacterial colonization/infection.
-
Cytomegalovirus (CMV) is a ubiquitous virus present in approximately two-thirds of the healthy population. This virus rarely causes an active disease in healthy individuals, but it is among the most common opportunistic infections in immunocompromised patients such as solid organ transplant recipients, patients receiving chemotherapy for cancer or patients with human immunodeficiency virus. Critically ill patients who are immunocompetent before intensive care unit admission may also become more prone to develop active CMV infection if they have prolonged hospitalizations, high disease severity, and severe sepsis. ⋯ The present issue of Critical Care brings a new study by Heininger and colleagues in which the authors found that patients with severe sepsis who developed active CMV infection had significantly longer intensive care unit and hospital stays, prolonged mechanical ventilation, but no changes in mortality compared to patients without CMV infection. We discuss the possible reasons for their findings (for example, selection bias and low (20%) statistical power to detect mortality endpoints), and also perform an update of our previous meta-analysis with the addition of Heininger and colleagues' study to verify whether the higher mortality rate with CMV holds. Our updated meta-analysis with approximately 1,000 patients shows that active CMV infection continues to be associated with a significant 81% higher mortality rate than that in critically ill patients without active CMV infection.
-
Donnino and colleagues provide new insights into the field of oxidative stress and mitochondrial dysfunction during septic shock. These authors suggest a coenzyme Q10 (CoQ10) deficiency in patients with septic shock. Larger prospective observational trials measuring CoQ10 in patients with septic shock are required to confirm the possibility of CoQ10 depletion. This study is a new step toward a study testing CoQ10 as a potential therapeutic agent for patients with septic shock.