Critical care : the official journal of the Critical Care Forum
-
Review Meta Analysis
Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis.
Critical illness is characterized by oxidative stress, which is a major promoter of systemic inflammation and organ failure due to excessive free radical production, depletion of antioxidant defenses, or both. We hypothesized that exogenous supplementation of trace elements and vitamins could restore antioxidant status, improving clinical outcomes. ⋯ Supplementation with high dose trace elements and vitamins may improve outcomes of critically ill patients, particularly those at high risk of death.
-
Many supposed low-risk intensive care unit (ICU) admissions develop acute organ failure (AOF). Identifying patients at high risk of developing AOF and targeting them with preventative strategies may be effective. Our study question was: in a population of ICU patients receiving positive pressure respiratory support (invasive or non-invasive) in the absence of non-respiratory AOF, what is the 14-day incidence of, risk factors for and time to acute organ failure? ⋯ Patients receiving positive (invasive or non-invasive) pressure respiratory support in the absence of non-respiratory AOF are commonly admitted to ICU; AOF is frequent in these patients. Organ failure developed within a short period after admission. Hypoxemic respiratory failure and cardiovascular dysfunction were strongly associated with AOF.
-
Sepsis represents a dysregulated host response to infection, the extent of which determines the severity of organ dysfunction and subsequent outcome. All trialled immunomodulatory strategies to date have resulted in either outright failure or inconsistent degrees of success. Intravenous immunoglobulin (IVIg) therapy falls into the latter category with opinion still divided as to its utility. ⋯ The strategy included the following text terms and combinations of these: IVIg, intravenous immune globulin, intravenous immunoglobulin, immunoglobulin, immunoglobulin therapy, pentaglobin, sepsis, inflammation, immune modulation, apoptosis. Preclinical and extrapolated clinical data of IVIg therapy in sepsis suggests improved bacterial clearance, inhibitory effects upon upstream mediators of the host response (for example, the nuclear factor kappa B (NF-κB) transcription factor), scavenging of downstream inflammatory mediators (for example, cytokines), direct anti-inflammatory effects mediated via Fcγ receptors, and a potential ability to attenuate lymphocyte apoptosis and thus sepsis-related immunosuppression. Characterizing the trajectory of change in immunoglobulin levels during sepsis, understanding mechanisms contributing to these changes, and undertaking IVIg dose-finding studies should be performed prior to further large-scale interventional trials to enhance the likelihood of a successful outcome.
-
Randomized Controlled Trial
Replacement of fentanyl infusion by enteral methadone decreases the weaning time from mechanical ventilation: a randomized controlled trial.
Patients undergoing mechanical ventilation (MV) are frequently administered prolonged and/or high doses of opioids which when removed can cause a withdrawal syndrome and difficulty in weaning from MV. We tested the hypothesis that the introduction of enteral methadone during weaning from sedation and analgesia in critically ill adult patients on MV would decrease the weaning time from MV. ⋯ The introduction of enteral methadone during weaning from sedation and analgesia in mechanically ventilated patients resulted in a decrease in the weaning time from MV.
-
Even though temperature is a continuous quantitative variable, its measurement has been considered a snapshot of a process, indicating whether a patient is febrile or afebrile. Recently, other diagnostic techniques have been proposed for the association between different properties of the temperature curve with severity of illness in the Intensive Care Unit (ICU), based on complexity analysis of continuously monitored body temperature. In this study, we tried to assess temperature complexity in patients with systemic inflammation during a suspected ICU-acquired infection, by using wavelets transformation and multiscale entropy of temperature signals, in a cohort of mixed critically ill patients. ⋯ We suggest that complexity analysis of temperature signals can assess inherent thermoregulatory dynamics during systemic inflammation and has increased discriminating value in patients with infectious versus noninfectious conditions, probably associated with severity of illness.