Critical care : the official journal of the Critical Care Forum
-
Sepsis leads to microcirculatory dysfunction and therefore a disturbed neurovascular coupling in the brain. To investigate if the dysfunction is also present in less severe inflammatory diseases we studied the neurovascular coupling in patients suffering from community acquired pneumonia. ⋯ Our study underlines the role of an early microcirculatory dysfunction in inflammatory syndromes that become evident in pre-septic conditions with a gradual decline according to disease severity.
-
The paper by Park and colleagues in the previous issue of Critical Care highlights vascular changes in electrical injury and finds them to be relatively long-lasting and significant. This finding is consistent with long-lasting disability seen clinically in electrically injured patients. Furthermore, the authors report that the changes seen in the shocked part of the body are accompanied by similar changes that are measurable in other parts of the body but that are not involved with electric current. ⋯ Recent psychiatric research indicates the importance of circulating cortisol and brain-derived neurotrophic factor (BDNF), which causes loss of hippocampal volume, in the genesis of depression. This psychiatric research has stimulated a speculative theory of the genesis of the psychological effects of electric shock. The paper by Park and colleagues is circumstantial support for the possibility that such a process is real and available.
-
New ways of approaching sedation and analgesia are being considered in our endeavour to improve our management of the ventilated patient. Long-term psychological problems are not insignificant and before we can assume benefit or harm of any new approach we must not delude ourselves by using sampling methods that can miss those patients most at risk.
-
Extracorporeal membrane oxygenation (ECMO) is a supportive therapy, with its success dependent on effective drug therapy that reverses the pathology and/or normalizes physiology. However, the circuit that sustains life can also sequester life-saving drugs, thereby compromising the role of ECMO as a temporary support device. This ex vivo study was designed to determine the degree of sequestration of commonly used antibiotics, sedatives and analgesics in ECMO circuits. ⋯ Sequestration of drugs in the circuit has implications on both the choice and dosing of some drugs prescribed during ECMO. Sequestration of lipophilic drugs such as fentanyl and midazolam appears significant and may in part explain the increased dosing requirements of these drugs during ECMO. Meropenem sequestration is also problematic and these data support a more frequent administration during ECMO.