Critical care : the official journal of the Critical Care Forum
-
Dr Blixt and colleagues show in an elegant pilot study that the continuous measurement of glucose in venous blood by microdialysis in a central venous catheter is feasible in critically ill patients. The performance of this type of continuous glucose monitoring device equals the performance of the commonly used handheld blood glucose meters. But are we, as ICU physicians and nurses, now ready to implement such continuous blood glucose sensors into the daily practice of the ICU? The only yardstick to this is "are these devices truly helping us ...in our critically ill patients".
-
Sepsis has been a factor of acute kidney injury (AKI); however, little is known about dialysis-requiring AKI and the risk of severe sepsis after survival to discharge. ⋯ AKI is an independent risk factor for severe sepsis. Even patients who recovered from AKI had a high risk of long-term severe sepsis.
-
The use of urinary output and vital signs to guide initial burn resuscitation may lead to suboptimal resuscitation. Invasive hemodynamic monitoring may result in over-resuscitation. This study aimed to evaluate the results of a goal-directed burn resuscitation protocol that used standard measures of mean arterial pressure (MAP) and urine output, plus transpulmonary thermodilution (TPTD) and lactate levels to adjust fluid therapy to achieve a minimum level of preload to allow for sufficient vital organ perfusion. ⋯ Initial hypovolemia may be detected by TPTD monitoring during the early resuscitation phase. This hypovolemia might not be reflected by blood pressure and hourly urine output. An adequate CI and tissue perfusion can be achieved with below-normal levels of preload. Early resuscitation guided by lactate levels and below-normal preload volume targets appears safe and avoids unnecessary fluid input.
-
Editorial Comment
Antibiotics for the critically ill: more than just selecting appropriate initial therapy.
Critically ill patients with infection provide a number of challenges to clinicians in terms of optimizing their antimicrobial treatment. Of foremost importance, initial antibiotic treatment should be selected as to provide coverage for the causative pathogens. However, the administration of those antibiotics (dosing, interval of administration, duration of infusion, route of administration) should be prescribed in a manner to ensure optimal drug delivery to the site of infection. ⋯ Intensive care unit practitioners should utilize treatment strategies that strive to deliver antibiotics in an individualized manner aimed at attaining desired pharmacokinetic/pharmacodynamic targets. The goal of such a treatment strategy is to maximize the likelihood of curing the infection and allowing the critically ill patient the best opportunity for recovery. Effective implementation of antimicrobial optimization delivery strategies will likely require a multi-disciplinary approach including intensivists, pharmacists, and infectious disease specialists.