Critical care : the official journal of the Critical Care Forum
-
Multicenter Study Observational Study
Procalcitonin decrease over 72 hours in US critical care units predicts fatal outcome in sepsis patients.
Close monitoring and repeated risk assessment of sepsis patients in the intensive care unit (ICU) is important for decisions regarding care intensification or early discharge to the ward. We studied whether considering plasma kinetics of procalcitonin, a biomarker of systemic bacterial infection, over the first 72 critical care hours improved mortality prognostication of septic patients from two US settings. ⋯ In septic patients, procalcitonin kinetics over the first 72 critical care hours provide prognostic information beyond that available from clinical risk scores. If these observations are confirmed, procalcitonin monitoring may assist physician decision-making regarding care intensification or early transfer from the ICU to the floor.
-
The Berlin definition divides acute respiratory distress syndrome (ARDS) into three severity categories. The relationship between these categories and pulmonary microvascular permeability as well as extravascular lung water content, which is the hallmark of lung pathophysiology, remains to be elucidated. The aim of this study was to evaluate the relationship between extravascular lung water, pulmonary vascular permeability, and the severity categories as defined by the Berlin definition, and to confirm the associated predictive validity for severity. ⋯ Severity categories of ARDS described by the Berlin definition have good predictive validity and may be associated with increased extravascular lung water and pulmonary vascular permeability.
-
Observational Study
Impact of arterial load on the agreement between pulse pressure analysis and esophageal Doppler.
The reliability of pulse pressure analysis to estimate cardiac output is known to be affected by arterial load changes. However, the contribution of each aspect of arterial load could be substantially different. In this study, we evaluated the agreement of eight non-commercial algorithms of pulse pressure analysis for estimating cardiac output (PPCO) with esophageal Doppler cardiac output (EDCO) during acute changes of arterial load. In addition, we aimed to determine the optimal arterial load parameter that could detect a clinically significant difference between PPCO and the EDCO. ⋯ Changes in arterial load profoundly affected the agreement of PPCO and EDCO, although the contribution of each aspect of arterial load to the PPCO-EDCO discrepancies was significantly different. Changes in Ea and C mainly determined PPCO-EDCO discrepancy.
-
Studies indicate that mechanically ventilated patients develop significant diaphragm muscle weakness, but the etiology of weakness and its clinical impact remain incompletely understood. We assessed diaphragm strength in mechanically ventilated medical ICU patients, correlated the development of diaphragm weakness with multiple clinical parameters, and examined the relationship between the level of diaphragm weakness and patient outcomes. ⋯ Infection is a major cause of severe diaphragm weakness in mechanically ventilated patients. Moreover, diaphragm weakness is an important determinant of poor outcomes in this patient population.
-
Observational Study
The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation.
The peripheral perfusion index (PI) is a noninvasive numerical value of peripheral perfusion, and the transcutaneous oxygen challenge test (OCT) is defined as the degree of transcutaneous partial pressure of oxygen (PtcO2) response to 1.0 FiO2. The value of noninvasive monitoring peripheral perfusion to predict outcome remains to be established in septic patients after resuscitation. Moreover, the prognostic value of PI has not been investigated in septic patients. ⋯ The PI and OCT are predictive of mortality for septic patients after resuscitation. Further investigations are required to determine whether the correction of an impaired level of peripheral perfusion may improve the outcome of septic shock patients.