Critical care : the official journal of the Critical Care Forum
-
African children hospitalised with severe febrile illness have a high risk of mortality. The Fluid Expansion As Supportive Therapy (FEAST) trial (ISCRTN 69856593) demonstrated increased mortality risk associated with fluid boluses, but the temporal relationship to bolus therapy and underlying mechanism remains unclear. ⋯ The increased risk from bolus therapy was not due to a mechanism occurring immediately after bolus administration. Excess mortality risk in the bolus group resulted from slower decrease in mortality risk over the ensuing 4 days. Thus, administration of modest bolus volumes appeared to prevent mortality risk declining at the same rate that it would have done without a bolus, rather than harm associated with bolus resulting from a concurrent increased risk of death peri-bolus administration.
-
Different definitions exist for hypotension in children. In this study, we aim to identify evidence-based reference values for low blood pressure and to compare these with existing definitions for systolic hypotension. ⋯ The different clinical guidelines for low blood pressure show large variability and low to moderate agreement with population-based lower centiles. For children < 12 years, the Paediatric Advanced Life Support definition fits best but it underestimates hypotension in older children. For children > 12 years, the Advanced Paediatric Life Support overestimates hypotension but Parshuram's cut-off for hypotension in the early warning score agrees well. Future studies should focus on developing reference values for hypotension for acutely ill children.
-
Accurate volume assessment is crucial in children under fluid therapy. Over the last decade, respiratory variation of aortic peak velocity (△VPeak) has been applied in intensive care unit and surgeries to help clinicians guide fluid management. The aim of this systematic review and meta-analysis was to test diagnostic performance of △VPeak in predicting fluid responsiveness of ventilated children and to explore the potential factors that influence the accuracy of △VPeak. ⋯ Overall, △VPeak has a good ability in predicting fluid responsiveness of children receiving mechanical ventilation, but this ability decreases in younger children (mean age < 25 months). The optimal threshold of △VPeak to predict fluid responsiveness in ventilated children is reliable between 12 and 13%.