Critical care : the official journal of the Critical Care Forum
-
Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is a life-saving technology that provides transient respiratory and circulatory support for patients with profound cardiogenic shock or refractory cardiac arrest. Among its potential complications, VA-ECMO may adversely affect lung function through various pathophysiological mechanisms. The interaction of blood components with the biomaterials of the extracorporeal membrane elicits a systemic inflammatory response which may increase pulmonary vascular permeability and promote the sequestration of polymorphonuclear neutrophils within the lung parenchyma. ⋯ Furthermore, VA-ECMO may result in long-standing pulmonary hypoxia, due to partial shunting of the pulmonary circulation and to reduced pulsatile blood flow within the bronchial circulation. Ultimately, these different abnormalities may result in a state of persisting lung inflammation and fibrotic changes with concomitant functional impairment, which may compromise weaning from VA-ECMO and could possibly result in long-term lung dysfunction. This review presents the mechanisms of lung damage and dysfunction under VA-ECMO and discusses potential strategies to prevent and treat such alterations.
-
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presently become a rapidly spreading and devastating global pandemic. Veno-venous extracorporeal membrane oxygenation (V-V ECMO) may serve as life-saving rescue therapy for refractory respiratory failure in the setting of acute respiratory compromise such as that induced by SARS-CoV-2. While still little is known on the true efficacy of ECMO in this setting, the natural resemblance of seasonal influenza's characteristics with respect to acute onset, initial symptoms, and some complications prompt to ECMO implantation in most severe, pulmonary decompensated patients. The present review summarizes the evidence on ECMO management of severe ARDS in light of recent COVID-19 pandemic, at the same time focusing on differences and similarities between SARS-CoV-2 and ECMO in terms of hematological and inflammatory interplay when these two settings merge.