Critical care : the official journal of the Critical Care Forum
-
The speckle tracking ultrasound is an innovative technology enabling distinct assessment of diaphragmatic movement, yet the relative data are scarce. In this pilot study, we sought to evaluate the predictive value of the weaning outcome of automatic speckle tracking in assessing diaphragm excursion. ⋯ The online version contains supplementary material available at 10.1186/s13054-022-04288-3.
-
The Sequential Organ Failure Assessment (SOFA) score was developed more than 25 years ago to provide a simple method of assessing and monitoring organ dysfunction in critically ill patients. Changes in clinical practice over the last few decades, with new interventions and a greater focus on non-invasive monitoring systems, mean it is time to update the SOFA score. As a first step in this process, we propose some possible new variables that could be included in a SOFA 2.0. By so doing, we hope to stimulate debate and discussion to move toward a new, properly validated score that will be fit for modern practice.
-
Observational Study
Association of ultra-early diffusion-weighted magnetic resonance imaging with neurological outcomes after out-of-hospital cardiac arrest.
This study aimed to investigate the association between ultra-early (within 6 h after return of spontaneous circulation [ROSC]) brain diffusion-weighted magnetic resonance imaging (DW-MRI) and neurological outcomes in comatose survivors after out-of-hospital cardiac arrest. ⋯ In this cohort study, PHSI findings on ultra-early DW-MRI were associated with poor neurological outcomes 6 months following the cardiac arrest. The combined CSF NSE levels showed higher sensitivity at 100% specificity than on DW-MRI alone. Prospective multicenter studies are required to confirm these results.
-
To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygenation represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral perfusion. ⋯ The causes of hypoxia are variable and can be analyzed pathophysiologically following "the oxygen route." The current trend is precision medicine, individualized and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability of multimodal monitoring. For this purpose, we developed the acronym "THE MANTLE," a bundle of therapeutical interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from ambient air to the mitochondria.