Critical care : the official journal of the Critical Care Forum
-
Percutaneous tracheostomy has become a routine procedure in most intensive care units, and point of care ultrasound is becoming used with greater frequency to augment diagnosis and therapy for critically ill patients. The case series from Rajajee and colleagues incorporates 'real-time' ultrasound in an effort to improve the safety of percutaneous tracheostomy. While their report does not prove that ultrasound should be used prior to or during all percutaneous tracheostomies, it does reinforce several important safety considerations concerning the anatomy of the neck, and in particular the potential to encounter bleeding complications during these procedures.
-
Several studies have demonstrated that perioperative hemodynamic optimization has the ability to improve postoperative outcome in high-risk surgical patients. All of these studies aimed at optimizing cardiac output and/or oxygen delivery in the perioperative period. We conducted a survey with the American Society of Anesthesiologists (ASA) and the European Society of Anaesthesiology (ESA) to assess current hemodynamic management practices in patients undergoing high-risk surgery in Europe and in the United States. ⋯ In conclusion, these results point to a considerable gap between the accumulating evidence about the benefits of perioperative hemodynamic optimization and the available technologies that may facilitate its clinical implementation, and clinical practices in both Europe and the United States.
-
Communication failures are a significant contributor to medical errors that harm patients. Critical care delivery is a complex system of inter-professional work that is distributed across time, space, and multiple disciplines. Because health-care education and delivery remain siloed by profession, we lack a shared framework within which we discuss and subsequently optimize patient care. ⋯ We suggest that the 'phases-of-illness paradigm' will facilitate communication about critically ill patients and create a shared mental model for interdisciplinary patient care. In so doing, this paradigm may reduce communication errors, complications, and costs while improving resource utilization and trainee education. Additional research applications are feasible.
-
In almost half of all sepsis patients, acute kidney injury (AKI) develops. However, the pathobiologic differences between sepsis patients with and without AKI are only poorly understood. We used a unique opportunity to examine dynamic inflammatory, renal hemodynamic, and microvascular changes in two clinically relevant large-animal models of sepsis. Our aim was to assess variability in renal responses to sepsis and to identify both hemodynamic and nonhemodynamic mechanisms discriminating individuals with AKI from those in whom AKI did not develop. ⋯ The observed variability in susceptibility to septic AKI in our models replicates that of human disease. Early abnormal host response accompanied by subsequent uncoupling between systemic and renal vascular resistance appear to be major determinants in the early phase of porcine septic AKI. Nonuniform and model-related renal hemodynamic responses that are unpredictable from systemic changes should be taken into consideration when evaluating hemodynamic therapeutic interventions in septic AKI.