Critical care : the official journal of the Critical Care Forum
-
Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. ⋯ Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury.
-
Mechanical ventilation (MV) has the potential to worsen pre-existing lung injury or even to initiate lung injury. Moreover, it is thought that injurious MV contributes to the overwhelming inflammatory response seen in patients with acute lung injury or acute respiratory distress syndrome. Ventilator-induced lung injury (VILI) is characterized by increased endothelial and epithelial permeability and pulmonary inflammation, in which the innate immune system plays a key role. ⋯ DAMPs activate pattern recognition receptors, may induce the release of proinflammatory cytokines and chemokines, and have been shown to initiate or propagate inflammation in non-infectious conditions. Experimental and clinical studies demonstrate the presence of DAMPs in bronchoalveolar lavage fluid in patients with VILI and the upregulation of pattern recognition receptors in lung tissue by MV. The objective of the present article is to review research in the area of DAMPs, their recognition by the innate immune system, their role in VILI, and the potential utility of blocking DAMP signaling pathways to reduce VILI in the critically ill.
-
In critically ill patients, it is uncertain whether exposure to older red blood cells (RBCs) may contribute to mortality. We therefore aimed to evaluate the association between the age of RBCs and outcome in a large unselected cohort of critically ill patients in Australia and New Zealand. We hypothesized that exposure to even a single unit of older RBCs may be associated with an increased risk of death. ⋯ In critically ill patients, in Australia and New Zealand, exposure to older RBCs is independently associated with an increased risk of death.
-
The timely provision of critical care to hospitalised patients at risk for cardiopulmonary arrest is contingent upon identification and referral by frontline providers. Current approaches require improvement. In a single-centre study, we developed the Bedside Paediatric Early Warning System (Bedside PEWS) score to identify patients at risk. The objective of this study was to validate the Bedside PEWS score in a large patient population at multiple hospitals. ⋯ The Bedside PEWS score identified children at risk for cardiopulmonary arrest. Scores were elevated and continued to increase in the 24 hours before the clinical deterioration event. Prospective clinical evaluation is needed to determine whether this score will improve the quality of care and patient outcomes.
-
Purulent pericarditis (PP) is a potentially life-threatening disease. Reported mortality rates are between 20 and 30%. Constrictive pericarditis occurs over the course of PP in at least 3.5% of cases. ⋯ Despite the lack of definitive evidence, potential benefits of fibrinolysis as a less invasive alternative to surgery in the management of PP seem promising. Early consideration should be given to fibrinolysis in order to prevent both constrictive and persistent PP. Nevertheless, in case of failure of fibrinolysis, pericardiectomy remains the primary option for complete eradication of infection.